Spin Rotator Slice Studies

Noah Tessema
Yuhao Peng, Mike Roney

University of Victoria

Wrapping up FMA

- Some people voiced concerns about the shape of the FMA, and what the reference point should be
- Demin suggested trying FMA studies at PMID
- BMAD doesn't let you easily change the reference point, but you can change the order of the lattice such that element 0 is PMID

Wrapping up FMA

- No difference with using PMID
- Difference in software?

LTT - Reconstructing the Rotator

- We are testing the stability of the Spin Rotator, and whether or not the loss of particles is due to Bmad's modelling
- Yuhao has already done 24 slice and 96 slice model
- I will be checking 120, 144, and 192 to see if the particle loss diminishes with the number of slices
- Checked how optimizer fits floor coordinate data corrections to the number of slices and plotted

Roadmap

Step	Tuning Parameters	Constraints	Progress
OPEN GEOMETRY		Stay within operational limits of magnets	
1. fit for hkicks describing rot region dipoles	hkick value	x-orbit	Lrot and rrot
	patch	floor	72, 96, 120, 144, 192, validation
2. fit for Sol field with hkicks on \& sq quads off	Sol field	spin at exit of L-rot region and exit of R-rot region	Could not optimize 192
	hkick	x -orbit	Lrot and rrot
	vkick	y-orbit	72, 96, 120, 144, validation
3. fit for squew-quad fields and tilt angles with hkicks on, Sol field on to get rid of $x-y$ coupling	squew quad field (k)	$x-y$ coupling matrix off-diagonal $=0$	Could not optimize 192
	tilt angle ('skew angles')	i.e. C matrix $=0$	Lrot and rrot
	hkick	x-orbit	validation
	vkick	y-orbit	
		beta function reasonable when both L-rot and R-r	Tighter restrictions on k1 and tilt.
4. rematch beta,alpha, dispersion, orbit - all iLocal Ring quad strength		beta, alpha, orbit, dispersion same as HER	
at exit of L-rot region and R-rot Region	squew quad strengths in L-	at exit of L-rot region and R-rot Region	
		$\mathrm{C}=0$ at exit	Done validation
CLOSED GEOMETRY			
		Stay within operational limits of magnet	
5. rematch Tunex, Tuney	NICO quads	Tunex and Tuney same as in HER	
6. rematch Chromaticity	set of ring sextupoles in AR	rChromaticity same as in HER	Done validation

Overview of Slice Model:

- Each half of the Spin Rotator tested in the design contains 6 magnets, which are each subdivided into slices of magnet and patches
- The slices subdivide the magnet into components of equal length and magnetic field strength
- The patches correct the horizontal and vertical position of the particle within the overall sliced spin rotator magnet
- The general order:

$$
S Q(1)+P(1)+S Q(1)+P(1)+\ldots+S Q(2)+P(2)+\ldots .
$$

Some technical jargon:

- soqf.bmad: solenoids on, quadrupoles off
- soqo.bmad: solenoids on, quadrupoles on
- Open geometry: looking at only a piece of the ring
- Closed geometry: looking at the entire ring
- hkick/vkick: horizontal or vertical kick elements in Bmad, kicks particle into position instead of a gradually bending.
- The slicing is important because we need to preserve the geometry of the ring and optical parameters, and using "bend" elements doesn't do that well in Bmad.
- The more slices we use, the more "bend" like the simulation behaves, while preserving optical parameters

Stage 1: HKICK Fitting

Stage 1: X_OFFSET Fitting

- X_OFFSET (P1)

OFFSET (P2)

Stage 1: X_PITCH Fitting

x_PITCH (P1)

- X_PITCH (P3)

Stage 1: Z_OFFSET Fitting

Stage 2: Fitting vkicks in sextupole on / quads off model
 96 slice
 120 slice

Stage 2: Fitting vkicks in sextupole on / quads off model

Making sure things look good (Irot soqo.bmad) 96 slice
 120 slice

May be
caused by
final point in optimizer?

Irot soqo.bmad
 96 slice

192 slice

留

Problem with matching rrot: soqf.bmad 96 slice
 196 slice

Only had the issue with 192 slice

 96 slice

rrot soqo.bmad

96 slice

120 slice

rrot soqo.bmad

72 slice

192 slice

Couldn't optimize (issues in soqf optimization phase)

Stage 3: Decoupling Irot

120 slice Irot "b2ea" section

120 slice Irot "b2eb" section

- Computationally simple yet tricky to get right
- Very weird beta functions after decoupling
- Finding the "sweet spot" between the tilt and skew quad fields is the hard part

Stage 3: Decoupling rrot

120 slice rrot "b2ea" section

- Previously was using looser constraints for fitting (+$0.8 \mathrm{~m}^{\wedge}-2$ for both a and b side, Irot and rrot) - worked fine
not be further lowered. For the L-Rot, the maxim quadrupole strength k_{1} of the first and the second rotator magnet is about $0.8,0.5 m^{-2}$, respectively; for the R-Rot, the max of both magnets is about $0.6 \mathrm{~m}^{-2}$.

Yuhao Peng's Thesis

- Now currently trying to impose tighter restrictions on fitting (based on her ring without rotator, for transparency)
- fitter isn't reaching desired results for rrot - hits a local minimum possibly
- Tried an iterative approach where I reduce things incrementally and very gradually (tweak tilt and skew quad strength slowly until within imposed limit) - same result no matter my starting targets
- Currently trying the "de" optimizer, a lot slower though

The de optimizer stands for differential evolution[Sto96]. The advantage of this optimizer is that it looks for global minimum. The disadvantage is that it is slow to find the bottom of a local minimum. A good strategy sometimes when trying to find a global minimum is to use de in combination with lm or lmdif one after the other. One important parameter with the de optimizer is the step size. A larger step size means that the optimizer will tend to explore larger areas of variable space but the trade off is that this will make it harder to find minimum in the locally. One good strategy is to vary the step size to see what is effective. Remember, the optimal step size will be different for different problems and for different starting points. The step size that is appropriate of the de optimizer will, in general, be different from the step size for the 1 m optimizer. For this reason, and to facilitate changing the step size, the actual step size used by the de optimizer is the step size given by a variable's step component multiplied by the global

Stage 4: Open Geometry Optical Rematch

- Once the tighter restrictions on the tilt have been successfully imposed for both Irot and rrot, we can begin with the open geometry rematch
- As Mike puts it: "8 variables, 12 control knobs"
- Simultaneously rematch dispersion, beta, alpha while keeping orbit fixed at 0
 and decoupled at the ends of each half of a rotator

Reproduction tests

- Run every fitter, unmodified, rebuild 96 slice model rotator
- Good way to verify that things are being done correctly and BMAD updates not changing how optimizing is done
- Everything is unmodified, except making sure the former fitting results were removed before doing my fitting.

Reproduction Tests

validation 96

Dispersion model]

her.bmad (orbit is scaled)

Reproduction Tests

her.bmad in the r-rot region

Dispersion [model]

Reproduction Tests

Rot.bmad (uses 96 slice)

Dispersion model

validation (96 slice)

What's next

- Finish the optimizing of the 120 slice model (seems to be the most promising) and 144 slice model once ironed out process and can debug the issues efficiently
- Long Term Tracking of 120 slice model (and 144 slice model) once the above is addressed

Roadmap

Step	Tuning Parameters	Constraints	Progress
OPEN GEOMETRY		Stay within operational limits of magnets	
1. fit for hkicks describing rot region dipoles	hkick value	x-orbit	Lrot and rrot
	patch	floor	72, 96, 120, 144, 192, validation
2. fit for Sol field with hkicks on \& sq quads off	Sol field	spin at exit of L-rot region and exit of R-rot region	Could not optimize 192
	hkick	x -orbit	Lrot and rrot
	vkick	y-orbit	72, 96, 120, 144, validation
3. fit for squew-quad fields and tilt angles with hkicks on, Sol field on to get rid of $x-y$ coupling	squew quad field (k)	$x-y$ coupling matrix off-diagonal $=0$	Could not optimize 192
	tilt angle ('skew angles')	i.e. C matrix $=0$	Lrot and rrot
	hkick	x-orbit	validation
	vkick	y-orbit	
		beta function reasonable when both L-rot and R-r	Tighter restrictions on k1 and tilt.
4. rematch beta,alpha, dispersion, orbit - all iLocal Ring quad strength		beta, alpha, orbit, dispersion same as HER	
at exit of L-rot region and R-rot Region	squew quad strengths in L-	at exit of L-rot region and R-rot Region	
		$\mathrm{C}=0$ at exit	Done validation
CLOSED GEOMETRY			
		Stay within operational limits of magnet	
5. rematch Tunex, Tuney	NICO quads	Tunex and Tuney same as in HER	
6. rematch Chromaticity	set of ring sextupoles in AR	rChromaticity same as in HER	Done validation

