Charged hadron identification and TOP in Belle II

Martin Bessner University of Hawaii

Belle II summer school July 26, 2023

Why do particle identification?

Why do particle identification?

with PID

No PID

PID subdetectors

Cherenkov radiation

- Light emission from particles faster than local speed of light
- Angle depends on velocity of particle
- Use velocity and momentum -> calculate mass
- Same concept in ARICH and TOP

Quartz in TOP Aerogel in ARICH

ARICH

Aerogel Ring Imaging Cherenkov Detector

- Forward endcap of Belle II
- Direct ring imaging
- Two aerogel tiles to increase light collection

- Single-photon detection over large area
- Hybrid Avalanche Photo Detector (HAPD)

2 amplification stages

 5mm x 5mm pixels, 60000 channels overall

ARICH

ARICH

TOP concept

(imaging) Time Of Propagation

- Cherenkov light in quartz bar
- Total internal reflection (>100 times)
- Expansion prism at backward side
 - -> spatial resolution
- Mirror at forward side
- PMTs for detection
- 64x8 pixels per module

TOP

- 16 modules around interaction point
- Cherenkov angle reconstructed from position and time of arrival
- 2 cm detector in active region

Light path

TOP MCP-PMTs

PMT lifetime

- PMTs accumulate several C/cm²
- Major challenge for MCP-PMTs: Outgassing reduces efficiency
- Hamamatsu: Improvements during mass production
- Three types installed
- Seem to degrade faster than expected
- Conventional PMTs replaced in March/April
- Studying ALD PMT lifetime

Readout electronics

- "boardstacks"
- Primary data-taking unit
- Custom development for TOP
- Digitize hits from PMTs and send event data to DAQ
- <100 ps time resolution</p>

TOP module

4 boardstacks per module

Assembled detector

16 modules

Assembled detector

After CDC + VXD installation...

Reconstruction

• Channel: $D^{*+} \rightarrow D^0 \pi_s^+$ with $D^0 \rightarrow K^- \pi^+$

Tagging from π_{s}^{+}

- Position vs. time diagram
- Kaon flying towards prism
- PID mainly from time of flight

Reconstruction

• Channel: $D^{*+} \rightarrow D^0 \pi_s^+$ with $D^0 \rightarrow K^- \pi^+$

Tagging from π_{s}^{+}

- Position vs. time diagram
- Kaon flying away from prism
- PID mainly from pattern of photons

TOP in LS1

- First access since initial installation
- Replaced aging PMTs
- Exchanged/repaired bad boardstacks
- Exchanged/upgraded some cables

hit map before LS1

hit map now

2-3 August 2023

PID decision

- Calculate likelihood based on all photons
- Take ratios, e.g. $L(K)/(L(\pi)+L(K))$
- Compare to a cutoff doesn't have to be 0.5!
- Ideal cutoff depends on analysis
- ROC CUIVE (receiver operating characteristic)

PID performance

- Main metric: π ->K mis-id vs. K->K efficiency
- Other separations behave the same way
- Gradual improvement, but more work needed
- Some known issues, some unknown sources e.g. in TOP: bunch finder, multi-track events
- Product of likelihoods *should* be ideal... ... but neural nets can beat it (in development)

Kinematic dependence

Summary

- Particle identification critical for physics analyses
- Two dedicated PID detectors in Belle II
 - ARICH in forward endcap
 - TOP in barrel
 Both use Cherenkov rac

Both use Cherenkov radiation

- Major repair/exchange campaign for TOP during LS1
- Ongoing work to improve PID algorithms
- Detectors are preparing for data-taking after LS1

Backup slides

Belle II vs. Belle

Quartz bar

MCP PMT lifetime

Belle's ACC

LHCb's RICH

Sajan Easo https://indico.cern.ch/event/1022051/contributions/4333562/

LHCb's TORCH (planned)

https://cds.cern.ch/record/1981563