

## The CKM Matrix and Unitarity Triangle

All flavor coupling constants ("coupling strengths") can be arranged in a matrix:


$$
U \equiv\left(\begin{array}{ccc}
d & s & b \\
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
\end{array}{ }_{\mathbf{t}}^{c}{ }_{t}^{c}\right.
$$

Unitarity ( $\left.U^{\dagger} \cup=1\right)$ prescribes 6 complex equations:

$$
\begin{aligned}
& V_{u d}^{*} V_{c d}+V_{u s}^{*} V_{c s}+V_{u b}^{*} V_{c b}=0 \\
& V_{u d}^{*} V_{t d}+V_{u s}^{*} V_{t s}+V_{u b}^{*} V_{t b}=0 \\
& V_{c d}^{*} V_{t d}+V_{c s}^{*} V_{t s}+V_{c b}^{*} V_{t b}=0 \\
& V_{u s}^{*} V_{u d}+V_{c s}^{*} V_{c d}+V_{t s}^{*} V_{t d}=0 \\
& V_{u b}^{*} V_{u d}+V_{c b}^{*} V_{c d}+V_{t b}^{*} V_{t d}=0 \\
& V_{u b}^{*} V_{u s}+V_{c b}^{*} V_{c s}+V_{t b}^{*} V_{t s}=0
\end{aligned}
$$

Each equation can be plotted in the complex plane as the sum of three vectors:


## The Unitarity Triangle

$$
V_{u b}^{*} V_{u d}+V_{c b}^{*} V_{c d}+V_{t b}^{*} V_{t d}=0
$$



The internal angles of this triangle are phase differences, which can be measured:

$$
\begin{aligned}
& \phi_{1}(\beta)=\arg \left(\frac{V_{c b}^{*} V_{c d}}{-V_{t b}^{*} V_{t d}}\right) \\
& \phi_{2}(\alpha)=\arg \left(\frac{V_{t b}^{*} V_{t d}}{-V_{u b}^{*} V_{u d}}\right) \\
& \phi_{3}(\gamma)=\arg \left(\frac{V_{u b}^{*} V_{u d}}{-V_{c b}^{*} V_{c d}}\right)
\end{aligned}
$$

## Convention:

$V_{t d}$ and $V_{u b}$ are taken to be complex, others real

$$
\begin{aligned}
& B^{0} \rightarrow \pi \ell^{+} v \\
& B^{0} \rightarrow X_{u} \ell v \\
& B^{+} \rightarrow \tau^{+} v \\
& \Lambda_{b} \rightarrow p \ell v
\end{aligned}
$$

$$
\begin{gathered}
\boldsymbol{B}^{0} \rightarrow \rho^{0} \gamma \\
\boldsymbol{B}_{s}-\boldsymbol{B}_{s} \text { mixing }
\end{gathered}
$$

Bourrely et al., PRD 79, 013008 (2009)
FLAG, arXiv:1607.00299 (2016)
Bharucha, JHEP 05, 092 (2012)
Detmold et al., PRD 92, 034503 (2015)
Faustov and Galkin, PRD 94, 073008 (2016)

$$
\begin{aligned}
& \hline B^{0} \rightarrow D^{(*)} \ell v \text { ( }{ }^{0} \rightarrow X_{c} \ell v \text { (lenergy, hadron } \\
& B^{0} \text { mass moments) } \\
& B^{0} \rightarrow X_{s} \gamma(\gamma \text { energy moments })
\end{aligned}
$$

Lange et al. (BLNP), PRD 72, 073006 (2005)
Andersen, Gardi (DGE), JHEP 601, 97 (2006)
Gambino et al. (GGOU), JHEP 10, 058 (2007)
Aglietti et al. (ADFR), EPJ C59 (2009)
Bauer et al. (BLL), PRD 64, 113004 (2001)

$$
V_{c b}^{*} V_{c d}
$$

Jubb et al., Nucl. Phys. B 915, 431 (2017) Artuso et al., RMP 88, 045002 (2016) Lenz, Nierste, arXiv:1102.4274 (2011) FNAL/MILC, PRD 93, 113016 (2016) FLAG, EPJC 77, 112 (2017)

## Semileptonic decays "roadmap"


$V_{c b}^{*} V_{c d}$

$$
\begin{aligned}
& B^{0} \rightarrow \boldsymbol{D}^{(*)} \ell v \\
& B^{0} \rightarrow X_{c} \ell v \text { (lenergy, hadron } \\
& \text { mass moments) } \\
& B^{0} \rightarrow X_{s} \gamma(\gamma \text { energy moments) }
\end{aligned}
$$

Exclusive decays:

- final state is fully reconstructed
- straightforward to measure
- significant theory uncertainty to extract $\left|V_{u b}\right|,\left|V_{c b}\right|$ due to initial/final states being hadrons


## Semileptonic decays "roadmap"


$V_{c b}^{*} V_{c d}$

$$
\begin{aligned}
& B^{0} \rightarrow D^{(*)} \ell v \\
& B^{0} \rightarrow \boldsymbol{X}_{c} \ell v \text { ( } \ell \text { energy, } q^{2}, \text { hadron } \\
& \quad \text { mass moments) } \\
& \boldsymbol{B}^{\mathbf{0}} \rightarrow \boldsymbol{X}_{\boldsymbol{s}} \gamma(\gamma \text { energy moments) }
\end{aligned}
$$

Exclusive decays:

- final state is fully reconstructed
- straightforward to measure
- significant theory uncertainty to extract $\left|V_{u b}\right|,\left|V_{c b}\right|$ due to initial/final states being hadrons


## Inclusive decays:

- final hadronic state not reconstructed
- challenging to measure, large backgrounds (especially $b \rightarrow c$ contaminating $b \rightarrow u$ )
- "small" theory uncertainty to extract $\left|V_{u b}\right|,\left|V_{c b}\right|$ : can use heavy quark expansion and determine nonperturbative matrix elements from measuring moments


## The experimental landscape: $\left|V_{c b}\right|$

$\left|V_{c b}\right|$

## Form factors

- E. Waheed et al. (Belle), Measurement of the CKM matrix element $\left|V_{c b}\right|$ from $B^{0} \rightarrow D^{*-} l^{+} v$ at Belle, Phys. Rev. D 100, 052007 (2019); 103, 079901(E) (2021).
- B. Aubert et al. (BABAR), Determination of the form-factors for the decay $B^{0} \rightarrow D^{*}-l^{+} v$ and of the CKM matrix element |V ${ }_{\text {cb }} \mid$, Phys. Rev. D 77, 032002 (2008).
- B. Aubert et al. (BABAR), A Measurement of the Branching Fractions of Exclusive $\mathrm{B}^{0} \rightarrow \mathrm{D}^{(*)}(\pi)$
 $\ell^{\imath} v$ Decays in Events with a Fully Reconstructed B Meson, Phys. Rev. Lett. 100, 151802 (2008).
- F. Abudinen et al. (Belle II), Studies of the semileptonic $B^{0} \rightarrow D^{*+} \ell^{-} v$ and $B^{-} \rightarrow D^{0} \ell^{-} v$ decay processes with $34.6 \mathrm{fb}-1$ of Belle II data, arXiv:2008 . 07198.
- F. Abudinen et al. (Belle II), Measurement of the semileptonic $B^{0} \rightarrow D^{*+} t^{-} v$ branching fraction with fully reconstructed $B$ meson decays and 34.6 fb-1 of Belle II data, arXiv:2008.10299.
- B. Aubert et al. (BABAR), Measurement of the Decay $B^{-} \rightarrow D^{* 0} e^{-} v$, Phys. Rev. Lett. 100, 231803 (2008).
- B. Aubert et al. (BABAR), Measurements of the semileptonic decays $B \rightarrow D \ell v$ and $B \rightarrow D^{*} \ell v$ using a global fit to D X $v$ final states, Phys. Rev. D79, 012002 (2009).


## Hadron moments

- B. Aubert et al. (BABAR), Measurement and interpretation of moments in inclusive semileptonic decays $B \rightarrow X_{c}{ }^{\leftarrow} v$, Phys. Rev. D 81, 032003 (2010).
- C. Schwanda et al. (Belle), Moments of the hadronic invariant mass spectrum in $B \rightarrow X_{c} \ell v$ decays at Belle, Phys. Rev. D 75, 032005 (2007).
- Lepton moments, $q^{2}$ moments
B. Aubert et al. (BABAR), Measurement of the electron energy spectrum and its moments in inclusive B $\rightarrow$ X ev decays, Phys. Rev. D 69, 111104 (2004).
- P. Urquijo et al. (Belle), Moments of the electron energy spectrum and partial branching fraction of $B \rightarrow X_{c}$ ev decays at Belle, Phys. Rev. D 75, 032001 (2007).
- Abudinén et al. (Belle II), Measurement of lepton mass squared moments in $B \rightarrow X_{c} \ell v$ decays with the Belle II experiment, Phys. Rev. D 107, 072002 (2023).


## The experimental landscape: $\left|V_{u b}\right|$

## Form factors

- H. Ha et al. (Belle), Measurement of the decay $\mathrm{B}^{0} \rightarrow \pi^{-} \ell^{+} v$ and determination of $\left|\mathrm{V}_{\mathrm{ub}}\right|$, Phys. Rev. D 83, 071101 (2011).
- A. Sibidanov et al. (Belle), Study of exclusive $B \rightarrow X_{u} \ell v$ decays and extraction of $\left|V_{u b}\right|$ using full reconstruction tagging at the Belle experiment, Phys. Rev. D 88, 032005 (2013).
- P. del Amo Sanchez et al. (BABAR), Study of $B \rightarrow \pi \ell v$ and $B \rightarrow \rho \ell v$ decays and determination of |Vubl, Phys. Rev. D 83, 032007 (2011).
- J.P. Lees et al. (BABAR), Branching fraction and form-factor shape measurements of exclusive charmless semileptonic B decays, and determination of |Vubl, Phys. Rev. D 86, 092004 (2012).
$M_{\mathrm{X}}, \mathbf{q}^{2}, \mathrm{E}_{e}, \mathrm{p}^{*},{ }_{\text {moments }}$
- J. P. Lees et al. (BABAR), Study of $B \rightarrow X_{u} \ell v$ decays in $B B$ events tagged by a fully reconstructed B-meson decay and determination of |V ${ }_{\mathrm{ub}} \mid$, Phys. Rev. D 86, 032004 (2012).
- J. P. Lees et al. (BABAR), Measurement of the inclusive electron spectrum from B meson decays and determination of $\left|\mathrm{V}_{\mathrm{ub}}\right|$, Phys. Rev. D 95, 072001 (2017).
- B. Aubert et al. (BABAR), Determination of $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from Measurements of the Electron and Neutrino Momenta in Inclusive Semileptonic B Decays, Phys. Rev. Lett. 95, 111801 (2005).
- A. Limosani et al. (Belle), Measurement of inclusive charmless semileptonic B-meson decays at the endpoint of the electron momentum spectrum, Phys. Lett. B 621, 28 (2005).
- H. Kakuno et al. (Belle), Measurement of $\left|V_{u b}\right|$ Using Inclusive $B \rightarrow X_{u} \ell \vee$ Decays with a Novel $X_{u}$ Reconstruction Method, Phys. Rev. Lett. 92, 101801 (2004).
- I. Bizjak et al. (Belle), Measurement of the Inclusive Charmless Semileptonic Partial Branching Fraction of B Mesons and Determination of $\left|\mathrm{V}_{\mathrm{ub}}\right|$ Using the Full Reconstruction Tag, Phys. Rev. Lett. 95, 241801 (2005).
- L. Cao et al. (Belle), Measurements of partial branching fractions of inclusive $B \rightarrow X_{u} \ell^{+} v$ decays with hadronic tagging, Phys. Rev. D 104, 012008 (2021).


## Semileptonic Decays: some formalism



$$
\begin{aligned}
d \Gamma & \propto|\mathcal{A}|^{2}=G_{F}^{2}\left|V_{c b}^{2}\right| \cdot\left|H^{\mu} L_{\mu}\right|^{2} \\
L_{\mu} & =\left\langle P_{\ell} P_{\nu}\right| \bar{\ell} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{\ell}|0\rangle \text { (leptonic current) } \\
H^{\mu} & =\langle D| \bar{c} \gamma^{\mu} b|B\rangle \text { (hadronic current) }
\end{aligned}
$$

As the leptons are "point" particles, we can evaluate the leptonic current using spinor wave functions. But $D$ and $B$ cannot be represented by spinors, i.e., the hadronic current is non-perturbative. However, it must transform as a 4-vector, and only two 4-vectors are available: $P_{B}{ }^{\mu}$ and $P_{D}{ }^{\mu}$. Thus:

$$
\begin{array}{rlr}
\langle D| \bar{c} \gamma^{\mu} b|B\rangle & =A \cdot P_{B}^{\mu}+B \cdot P_{D}^{\mu} & \\
& \rightarrow f_{+}\left(P_{B}+P_{D}\right)^{\mu}+f_{-}\left(P_{B}-P_{D}\right)^{\mu} & (\text { form factors ) } \\
& =f_{+}\left(q^{2}\right)\left(P_{B}+P_{D}\right)^{\mu}+f_{-}\left(q^{2}\right) q^{\mu} & \text { where } q^{\mu} \equiv\left(P_{B}-P_{D}\right)^{\mu}
\end{array}
$$

Contracting this with the leptonic current gives:

$$
\begin{aligned}
q^{\mu} \bar{\ell} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu & =\left(P_{B}-P_{D}\right)^{\mu} \bar{\ell} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu=\left(P_{\ell}+P_{\nu}\right)^{\mu} \bar{\ell} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu \\
& =\left(P_{\ell}+P_{\nu}\right)^{\bar{\ell}} \gamma_{\mu} \nu-\left(P_{\ell}+P_{\nu}\right)^{\mu} \bar{\ell} \gamma_{\mu} \gamma^{5} \nu \\
& =\bar{\ell}\left(\not \ell_{\ell}+\not p_{\nu}\right) \nu-\bar{\ell}\left(\not \ell_{\ell}+\not p_{\nu}\right) \gamma^{5} \nu \\
& =\left(-m_{\ell}+m_{\nu}\right) \bar{\ell} \nu-\left(-m_{\ell}-m_{\nu}\right) \bar{\ell} \gamma^{5} \nu \\
& =\left(-m_{\ell}+m_{\nu}\right) \bar{\ell} \nu+\left(m_{\ell}+m_{\nu}\right) \bar{\ell} \gamma^{5} \nu \\
& \approx 0 \quad\left[\text { since } m_{\nu} \simeq 0 \text { and } \mathrm{m}_{\ell} \ll \mathrm{M}_{\mathrm{B}}, \mathrm{M}_{\mathrm{D}}\right]
\end{aligned}
$$

$\Rightarrow$ for $\ell=e, \mu$, the contribution from $f_{-}\left(q^{2}\right)$ is negligible, and decay rate depends only on $f_{+}\left(q^{2}\right)$ form factor

$$
\begin{aligned}
\frac{d \Gamma(B \rightarrow \pi \ell \nu)}{d q^{2}} & =\frac{G_{F}^{2}}{24 \pi^{3}} p^{* 3}\left|V_{u b}\right|^{2} f_{+}^{2}\left(q^{2}\right) \\
f_{+}\left(q^{2}\right) & =\frac{1}{\left(1-q^{2} / M_{B^{*}}^{2}\right)} \sum_{k=0}^{3} b_{k}\left[z^{k}-(-1)^{k} \frac{k}{4} z^{4}\right]
\end{aligned}
$$

Bourrely, Caprini, Lellouch, PRD 79, 013008 (2009)

$$
\begin{aligned}
& \text { where } z=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}} \\
& t_{+}=\left(M_{B}+M_{\pi}\right)^{2}=29.4 \mathrm{GeV}^{2}, \\
& t_{0}=\left(M_{B}+M_{\pi}\right)\left(\sqrt{M_{B}}-\sqrt{M_{\pi}}\right)^{2}=20.1 \mathrm{GeV}^{2}
\end{aligned}
$$

Fit $q^{2}$ spectrum + LCSR + LQCD for BCL parameters and $\left|V_{u b}\right|$ :
LQCD: Aoki (FLAG), EPJC 82 (2022) 869)
LCSR: Bharucha, JHEP 05, 092, (2012)

A. J. Schwartz

US Belle II Summer School 2023


The CKM Matrix

## $\left|V_{c b}\right|$ from $B \rightarrow D^{(*)} l v$



New kinematic variable w (rather than $q^{2}$ ):
$w \equiv \frac{P_{B} \cdot P_{D^{*}}}{M_{B} M_{D^{*}}}=\frac{-\left(P_{B}-P_{D^{*}}\right)^{2}+P_{B}^{2}+P_{D^{*}}^{2}}{2 M_{B} M_{D^{*}}}=\frac{M_{B}^{2}+M_{D^{*}}^{2}-q^{2}}{2 M_{B} M_{D^{*}}}$
[Recall that $\left.q^{2}=\left(P_{B}-P_{D^{*}}\right)^{2}=\left(P_{\ell}+P_{\nu}\right)^{2}\right]$

Two extreme situations:

$$
\begin{aligned}
q^{2} \approx 0 \rightarrow w & =w_{\max } \\
& =\left(M_{B}{ }^{2}+M_{D^{*}}{ }^{2}\right) /\left(2 M_{B} M_{D^{*}}\right) \\
& =1.6
\end{aligned}
$$

$$
\begin{aligned}
q^{2}=q_{\text {max }}^{2} & =\left(M_{B}-M_{D^{*}}\right)^{2} \\
& =10.69(\mathrm{GeV})^{2} \rightarrow w_{\text {min }}=1
\end{aligned}
$$


(LCSR reliable, LQCD not)
("zero recoil" : LQCD reliable, LCSR not)

## $\left|V_{c b}\right|$ from $B \rightarrow D^{(*)} l v$



$$
w \equiv v_{B} \cdot v_{D}=\frac{M_{B}^{2}+M_{D}^{2}-q^{2}}{2 M_{B} M_{D}}
$$

## $B \rightarrow D^{*} l v$ decay rate:

$$
\begin{aligned}
\frac{d \Gamma}{d w}= & \frac{G_{F}^{2}}{48 \pi^{3}} M_{D^{*}}^{3}\left(M_{B}-M_{D^{*}}\right)^{2} \sqrt{w^{2}-1}(w+1)^{2}\left|V_{c b}\right|^{2} \eta_{E W}^{2} F_{\text {form factor }} F^{2}(w) \\
F^{2}(w)= & h_{A_{1}}^{2}(w)\left\{2\left[\frac{1-2 w r+r^{2}}{(1-r)^{2}}\right]\left[1+R_{1}^{2}(w)(w-1)\right]+\left[1+\left(1-R_{2}(w)\right) \frac{w-1}{1-r}\right]^{2}\right\} \\
& \text { where } r=M_{D^{*}} / M_{B}
\end{aligned}
$$

Caprini, Lelouch, Neubert:

$$
\begin{aligned}
& h_{A_{1}}(z)=h_{A_{1}}(1)\left[1-8 \rho^{2} z+\left(53 \rho^{2}-15\right) z^{2}-\left(231 \rho^{2}-91\right) z^{3}\right] \\
& R_{1}(w)=R_{1}(1)-0.12(w-1)+0.05(w-1)^{2} \\
& R_{2}(w)=R_{2}(1)-0.11(w-1)+0.06(w-1)^{2}
\end{aligned}
$$

$$
\text { where } z=(\sqrt{w+1}-\sqrt{2}) /(\sqrt{w+1}+\sqrt{2})
$$

## $\left|V_{c b}\right|$ from $B \rightarrow D^{*} \mid v$

## Advantages over $\boldsymbol{B} \rightarrow$ Dlv:

- (2.2-2.4)x larger branching fraction
- hadronic tag reconstruction not needed due to $D^{*}$
$\Rightarrow$ much higher statistics (180k signal events, vs. 17k for $B \rightarrow$ Dlv)
Statistics are high enough to fit the $w, \cos \theta_{\ell}, \cos \theta_{V}, \chi$ distributions to fully differential decay rate

$$
\frac{d \Gamma\left(B^{0} \rightarrow D^{*-} \ell^{+} \nu\right)}{d w d \cos \theta_{\ell} d \cos \theta_{V} d \chi}
$$








An "inclusive" search means $B \rightarrow X_{c} l v$;, where $X_{c}$ denotes final state hadrons containing charm.

- Experimentally, no specific final state is reconstructed. Statistics are high, but backgrounds are high
- Theoretically, one calculate $a b \rightarrow c$ transition, not $a<D^{*} \mid \mathcal{H}[B>$ matrix element (parameterized by form factors). Typically this gives less theoretical uncertainty
- a decay mode with a specific final state is called an "exclusive" decay

Strategy: the inclusive $b \rightarrow$ clv decay rate is calculated using the Heavy Quark Expansion. This is a double expansion in small (perturbative) parameters $\alpha_{s}$ and $\left(\Lambda_{Q C D} / m_{b}\right)$. The expansion depends on unknown $B$ matrix elements of local operators. However, these matrix elements also determine moments of the lepton energy and recoil hadronic mass in $B \rightarrow X l v$ decays. The moment distributions have been measured (Belle, Babar), and thus one can fit the moment distributions and the measured width for $B \rightarrow X l v$ to extract $\left|V_{c b}\right|$

$$
\left\langle E_{\ell}^{n}\right\rangle=\frac{\int_{E_{\mathrm{cut}}}^{E_{\max }} d E_{\ell}\left(E_{\ell}\right)^{n} \frac{d \Gamma}{d E_{\ell}}}{\int_{E_{\mathrm{cut}}}^{E_{\max }} d E_{\ell} \frac{d \Gamma}{d E_{\ell}}}
$$









$$
\begin{aligned}
& \left|\mathrm{V}_{\mathrm{cb}}\right|=(42.19 \pm 0.78) \times 10^{-3} \quad(\text { kinetic scheme }) \\
& \left|\mathrm{V}_{\mathrm{cb}}\right|=(41.98 \pm 0.45) \times 10^{-3} \quad(1 \mathrm{~S} \text { scheme })
\end{aligned}
$$

The CKM Matrix


Very challenging to measure $B \rightarrow X_{u} l v$ ( $X_{u}$ denotes final state hadrons not coming charm), because $B \rightarrow X_{c} l v$ background is $\sim 50 x$ larger and swamps the signal.

Strategy: fit data in limited regions of $M_{X}, E_{l}$, and $q^{2}$ where $B \rightarrow X_{c}$ lv background is suppressed, e.g., at lower values of $M_{X}$, higher values of $E_{\ell}$, and higher values of $q^{2}$. Requiring such limited phase space regions complicates the perturbatve QCD calculations needed to extract $\left|V_{u b}\right|$ from the measured rate. Different theoretical models use different parameterizations of the "shape functions" needed to evaluate the unmeasured regions of phase space. Five theory models are commonly used: BLNP, DGE, GGOU, ADFR, and BLL, but no theoretical approach is preferred over the others.



To beat down $B \rightarrow X_{c} l v$, Belle uses a sophisticated BDT based on $M_{\text {miss }}{ }^{2}$, finding a soft $\pi^{+}$from $D^{*}$ decay, number of kaons, $B_{\text {sig }}$ vertex, and $Q_{\text {tot }}$. Cutting on BDT output rejects $98.7 \%$ of $X_{c} l v$, keeping $18 \%$ of $X_{u} l v$ :
[Cao et al. (Belle), PRD 104, 012008 (2021)]


| Measurement | Accepted region | $\Delta \mathcal{B}\left[10^{-4}\right]$ | Notes |
| :---: | :---: | :---: | :---: |
| CLEO 564 | $E_{e}>2.1 \mathrm{GeV}$ | $3.3 \pm 0.2 \pm 0.7$ |  |
| BABAR 56 | $E_{e}>2.0 \mathrm{GeV}, s_{\mathrm{h}}^{\max }<3.5 \mathrm{GeV}^{2}$ | $4.4 \pm 0.4 \pm 0.4$ |  |
| BABAR 560 | $E_{e}>1.0 \mathrm{GeV}$ | $1.55 \pm 0.08 \pm 0.09$ | Using the GGOU model |
| Belle 565 | $E_{e}>1.9 \mathrm{GeV}$ | $8.5 \pm 0.4 \pm 1.5$ |  |
| BABAR 555 | $M_{X}<1.7 \mathrm{GeV} / c^{2}, q^{2}>8 \mathrm{GeV}^{2} / c^{4}$ | $6.9 \pm 0.6 \pm 0.4$ |  |
| Belle 566 | $M_{X}<1.7 \mathrm{GeV} / c^{2}, q^{2}>8 \mathrm{GeV}^{2} / c^{4}$ | $7.4 \pm 0.9 \pm 1.3$ |  |
| Belle 567 | $M_{X}<1.7 \mathrm{GeV} / c^{2}, q^{2}>8 \mathrm{GeV}^{2} / c^{4}$ | $8.5 \pm 0.9 \pm 1.0$ | Used only in BLL average |
| BABAR 555 | $P_{+}<0.66 \mathrm{GeV}$ | $9.9 \pm 0.9 \pm 0.8$ |  |
| BABAR 555 | $M_{X}<1.7 \mathrm{GeV} / c^{2}$ | $11.6 \pm 1.0 \pm 0.8$ |  |
| BABAR 55 | $M_{X}<1.55 \mathrm{GeV} / c^{2}$ | $10.9 \pm 0.8 \pm 0.6$ |  |
| Belle 554 | $\left(M_{X}, q^{2}\right)$ fit, $p_{\ell}^{*}>1 \mathrm{GeV} / c$ | $19.6 \pm 1.7 \pm 1.6$ |  |
| BABAR 555 | $\left(M_{X}, q^{2}\right)$ fit, $p_{\ell}^{*}>1 \mathrm{GeV} / c$ | $18.2 \pm 1.3 \pm 1.5$ |  |
| BABAR 555 | $p_{\ell}^{*}>1.3 \mathrm{GeV} / c$ | $15.5 \pm 1.3 \pm 1.4$ |  |
| Belle (2021) | $E_{\ell}>1.0 \mathrm{GeV}$ | $15.9 \pm 0.7 \pm 1.6$ |  |

$$
\left|V_{u b}\right|=\sqrt{\frac{\Delta \mathcal{B}\left(B \rightarrow X_{u} \ell^{+} \nu\right)}{\tau_{B} \cdot \Delta \Gamma_{\mathrm{th}}\left(B \rightarrow X_{u} \ell^{+} \nu\right)}}
$$

## Using GGOU for $\Delta \Gamma_{t h}$ :

Cao et al. (Belle), PRD 104, 012008 (2021):

$$
\left.\left.\begin{array}{rl}
\left|V_{u b}\right|(\mathrm{BLNP}) & =\left(4.05 \pm 0.09_{-0.21}^{+0.20}+0.18\right. \\
\left|V_{u b}\right|(\mathrm{DGE}) & =\left(4.16 \pm 0.09_{-0.22}^{+0.21}{ }_{-0.12}^{+0.11}\right) \times 10^{-3} \\
\left|V_{u b}\right|(\mathrm{GGOU}) & =\left(4.15 \pm 0.09_{-0.22}^{+0.21}+0.009\right.
\end{array}\right) \times 10^{-3}{ }_{-0.09}^{+0.08}\right)=\left(4.05 \pm 0.09_{-0.21}^{+0.20} \pm 0.18\right) \times 10^{-3} .
$$

## Putting all together: Inclusive vs. Exclusive $\left|V_{c b}\right|,\left|V_{u b}\right|$



## Lattice results used:

Bailey et al. (MILC), PRD 89, 114504 (2014) Bailey et al. (MILC), PRD 92, 034506 (2015) Bailey et al. (MILC), PRD 92, 014024 (2015) Flynn et al., (RBC/UKQCD) PRD 91, 074510 (2015) Harrison et al. (HPQCD), PRD 97, 054502 (2018)

Aoki (FLAG), EPJC 82 (2022) 869

|  | Exclusive ( $\times 10^{-2}$ ) | Inclusive ( $\times 10^{\mathbf{- 2}}$ ) | Difference |
| :---: | :---: | :---: | :---: |
| $\left\|V_{c b}\right\|$ | $\begin{aligned} & 3.846 \pm 0.040 \pm 0.055\left(\mathrm{D}^{*} \ell \nu \mathrm{CLN}\right) \\ & 3.83 \pm 0.07 \pm 0.06(\mathrm{D} * \ell \mathrm{BGL}[\text { Belle }]) \\ & 3.958 \pm 0.094 \pm 0.037(\mathrm{D} \ell v) \end{aligned}$ | $4.219 \pm 0.078$ (kinetic scheme) <br> $4.198 \pm 0.045$ ( 1 S scheme) | $2.2-3.3 \sigma$ |
| $\left\|V_{u b}\right\|$ | $0.367 \pm 0.015(\pi / \nu)$ | $\begin{aligned} & 0.419 \pm 0.012 \pm 0.012 \text { (GGOU) } \\ & 0.428 \pm 0.013 \pm 0.020 \text { (BLNP) } \end{aligned}$ | $2.2-2.3 \sigma$ |

## Summary of CKM measurements

- $\left|V_{c b}\right|$ is measured via exclusive $B \rightarrow D^{*} \ell v$ and $B \rightarrow D \ell v$ decays. Uncertainty arises from form factors, of which there are two common choices: CLN and BGL
- $\left|V_{c b}\right|$ is measured via inclusive $B \rightarrow X_{c} \ell v$ decays and using HQE. Uncertainty arises from matrix elements of local operators. These are determined by fitting moment distributions. Two theory schemes available: kinetic scheme and 1S scheme.
- The measurements differ: inclusive $\left|V_{c b}\right|$ is higher than exclusive by 2.2-3.3 $\sigma$
- $\left|V_{u b}\right|$ is measured via exclusive $B \rightarrow \pi \ell v$ decays. Uncertainty arises from form factors, of which there is one common choice: BCL
- $\left|V_{c b}\right|$ is measured via inclusive $B \rightarrow X_{u} \ell v$ decays. Many cuts are made to reduce huge $B \rightarrow$ $X_{c} \ell v$ background, and this makes it challenging to theoretically predict the rate. Five theory schemes available: BLNP, DGE, GGOU, ADFR, and BLL.
- The measurements differ: inclusive $\left|V_{u b}\right|$ is higher than exclusive by 2.2-2.3 $\sigma$
- $\left|V_{c s}\right|$ is measured via exclusive $D_{s}^{+} \rightarrow \ell^{+} v$ and $D \rightarrow K \ell v$ decays. Uncertainty arises from decay constants and form factors, respectively. Results agree. $D \rightarrow K \ell v$ has much higher statistics, but theory error from form factors is was larger, so overall precision is was worse.
- $\left|V_{\text {cd }}\right|$ is measured via exclusive $D^{+} \rightarrow \ell^{+} v$ and $D \rightarrow \pi \ell v$ decays. Uncertainty arises from decay constants and form factors, respectively. Results agree. $D \rightarrow \pi \ell$ h has much higher statistics, but theory error from form factors is was larger, so overall precision is was worse.
- Strong competition from BESIII (!)


## Extra Slides

## $B \rightarrow D \ell v$ Reconstruction:

After tag side reconstructed, tracks are "removed" and signal side D reconstructed. After D reconstructed, e or $\mu$ is added to decay and missing mass calculated:

$$
M_{\mathrm{miss}}^{2}=\left(P_{\mathrm{beam}}-P_{D}-P_{\ell}\right)^{2}
$$

Missing mass spectrum (in bins of w) is fit for signal yield; from signal yield one calculates $\Delta \Gamma / \Delta w$.

$$
\boldsymbol{B}^{\mathbf{0}} \rightarrow \boldsymbol{D}^{+} \boldsymbol{e}^{-} \boldsymbol{v}(2848 \text { signal events })
$$





