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The CKM Matrix and Unitarity Triangle

All flavor coupling constants (“coupling strengths”) can be arranged in a matrix:

Unitarity (U†U=1) prescribes 6 complex equations:

Each equation can be plotted in the 
complex plane as the sum of three 
vectors:
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The Unitarity Triangle

The internal angles of this triangle are phase differences, which can be measured:

Convention: 
Vtd and Vub are taken to be complex, 
others real
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B0 ® r0g 
   Bs–Bs mixing 

Belle
LHCbUnitarity triangle – determining the sides
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B0 ® D(*)l n 
B0 ® Xc l n  (l energy, hadron 
      mass moments)  
B0 ® Xs g (g energy moments) 

B0 ® p l + n 
   B0 ® Xu l n 

B+ ® t+ n 
Lb ® p l+n 

Semileptonic decays “roadmap”

Exclusive decays:
• final state is fully reconstructed
• straightforward to measure
• significant theory uncertainty to extract |Vub|, |Vcb| due to initial/final states being hadrons
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B0 ® D(*)l n 
B0 ® Xc l n  (l energy, q2, hadron 
      mass moments)  
B0 ® Xs g (g energy moments) 

B0 ® p l + n 
   B0 ® Xu l n 

B+ ® t+ n 
Lb ® p l+n 

Semileptonic decays “roadmap”

Exclusive decays:
• final state is fully reconstructed
• straightforward to measure
• significant theory uncertainty to extract |Vub|, |Vcb| due to initial/final states being hadrons

Inclusive decays:
• final hadronic state not reconstructed
• challenging to measure, large backgrounds (especially b® c contaminating b® u)
• “small” theory uncertainty to extract |Vub|, |Vcb|: can use heavy quark expansion and determine 

nonperturbative matrix elements from measuring moments
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The experimental landscape: |Vcb|

|Vcb|
Form factors
• E. Waheed et al. (Belle), Measurement of the CKM matrix element |Vcb| from B0 → D*−l+n at 

Belle, Phys. Rev. D 100, 052007 (2019); 103, 079901(E) (2021).
• B. Aubert et al. (BABAR), Determination of the form-factors for the decay B0 → D*−l+n and of 

the CKM matrix element |Vcb|, Phys. Rev. D 77, 032002 (2008).
• B. Aubert et al. (BABAR), A Measurement of the Branching Fractions of Exclusive B0 → D(*) (p) 

l-n Decays in Events with a Fully Reconstructed B Meson, Phys. Rev. Lett. 100, 151802 
(2008).

• F. Abudinen et al. (Belle II), Studies of the semileptonic B0 → D*+l-n and B- → D0 l-n decay 
processes with 34.6 fb−1 of Belle II data, arXiv:2008 .07198.

• F. Abudinen et al. (Belle II), Measurement of the semileptonic B0 → D*+l-n branching fraction 
with fully reconstructed B meson decays and 34.6 fb−1 of Belle II data, arXiv:2008.10299. 

• B. Aubert et al. (BABAR), Measurement of the Decay B- → D*0 e-n , Phys. Rev. Lett. 100, 
231803 (2008).

• B. Aubert et al. (BABAR), Measurements of the semileptonic decays B → D l n and B → D* l n 
using a global fit to D Xl n final states, Phys. Rev. D79, 012002 (2009). 

Hadron moments
• B. Aubert et al. (BABAR), Measurement and interpretation of moments in inclusive semileptonic 

decays B → Xc l-n, Phys. Rev. D 81, 032003 (2010).
• C. Schwanda et al. (Belle), Moments of the hadronic invariant mass spectrum in B → Xc l n

decays at Belle, Phys. Rev. D 75, 032005 (2007).

• Lepton moments, q2 moments
B. Aubert et al. (BABAR), Measurement of the electron energy spectrum and its moments in 
inclusive B → X e n decays, Phys. Rev. D 69, 111104 (2004). 

• P. Urquijo et al. (Belle), Moments of the electron energy spectrum and partial branching fraction 
of B → Xc e n decays at Belle, Phys. Rev. D 75, 032001 (2007). 

• Abudinén et al. (Belle II), Measurement of lepton mass squared moments in B → Xc l n decays 
with the Belle II experiment, Phys. Rev. D 107, 072002 (2023).

Hadronic B meson tagging

Analysis performed with hadronic tagging (fully reconstructed Btag ):

! reduce non-B background

! know kinematics of signal B

S. Hirose

Btag reconstructed in
1104 di↵erent
hadronic decay modes

E�ciency: ⇠ 10�3

Performed using neural network

E�ciency correction in MC using reference channel

Saskia Falke (Semi)leptonic B decays with Belle 06.07.17 7 / 28

e+

e-

µ
n
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The experimental landscape: |Vub|

|Vub| Form factors
• H. Ha et al. (Belle), Measurement of the decay B0 → p- l+n and determination of |Vub|, Phys. Rev. 

D 83, 071101 (2011).
• A. Sibidanov et al. (Belle), Study of exclusive B → Xu l n decays and extraction of |Vub| using full 

reconstruction tagging at the Belle experiment, Phys. Rev. D 88, 032005 (2013). 
• P. del Amo Sanchez et al. (BABAR), Study of B → p l n and B → r l n decays and determination of 

|Vub|, Phys. Rev. D 83, 032007 (2011).
• J.P. Lees et al. (BABAR), Branching fraction and form-factor shape measurements of exclusive 

charmless semileptonic B decays, and determination of |Vub|, Phys. Rev. D 86, 092004 (2012). 

MX, q2, Ee, p*l  moments

• J. P. Lees et al. (BABAR), Study of B → Xu l n decays in BB events tagged by a fully reconstructed 
B-meson decay and determination of |Vub|, Phys. Rev. D 86, 032004 (2012). 

• J. P. Lees et al. (BABAR), Measurement of the inclusive electron spectrum from B meson decays 
and determination of |Vub|, Phys. Rev. D 95, 072001 (2017). 

• B. Aubert et al. (BABAR), Determination of |Vub| from Measurements of the Electron and Neutrino 
Momenta in Inclusive Semileptonic B Decays, Phys. Rev. Lett. 95, 111801 (2005). 

• A. Limosani et al. (Belle), Measurement of inclusive charmless semileptonic B-meson decays at 
the endpoint of the electron momentum spectrum, Phys. Lett. B 621, 28 (2005). 

• H. Kakuno et al. (Belle), Measurement of |Vub| Using Inclusive B → Xu l n Decays with a Novel Xu 
Reconstruction Method, Phys. Rev. Lett. 92, 101801 (2004). 

• I. Bizjak et al. (Belle), Measurement of the Inclusive Charmless Semileptonic Partial Branching 
Fraction of B Mesons and Determination of |Vub| Using the Full Reconstruction Tag, Phys. Rev. 
Lett. 95, 241801 (2005). 

• L. Cao et al. (Belle), Measurements of partial branching fractions of inclusive B → Xu l+n decays 
with hadronic tagging, Phys. Rev. D 104, 012008 (2021).
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Semileptonic Decays: some formalism

dΓ ∝ |A|2 = G2
F |V 2

cb| · |HµLµ|2

Lµ = 〈P!Pν|!̄γµ(1 − γ5)ν!|0〉 (leptonic current)

Hµ = 〈D|c̄γµb|B〉 (hadronic current)

Evaluating the leptonic current gives !̄γµ(1 − γ5)ν!, where ! and ν are spinor wavefunctions.
We cannot evaluate the hadronic current because we do not know the |B〉 and 〈D| quantum states.
However, the hadronic current must be a four-vector, and, since B and D are spinless, the only four-
vectors available are PB and PD. Thus:

〈D|c̄γµb|B〉 = A · P µ
B + B · P µ

D

→ f+(PB + PD)µ + f−(PB − PD)µ (form factors)

= f+(q
2)(PB + PD)µ + f−(q

2)qµ where qµ ≡ (PB − PD)µ

Each of these terms gets contracted with the leptonic current !̄γµ(1 − γ5)ν. The second term gives:

qµ!̄γµ(1 − γ5)ν = (PB − PD)µ!̄γµ(1 − γ5)ν = (P! + Pν)
µ!̄γµ(1 − γ5)ν

= (P! + Pν)
µ!̄γµν − (P! + Pν)

µ!̄γµγ
5ν

= !̄( 'p!+ 'pν)ν − !̄( 'p!+ 'pν)γ
5ν

= (−m! + mν) !̄ ν − (−m! − mν) !̄γ
5ν

[applying the Dirac equations ( 'p− m)ψ = 0 and ψ̄( 'p+ m) = 0]

= (−m! + mν) !̄ ν + (m! + mν) !̄γ
5ν

≈ 0 [since mν ) 0 and m! * MB,MD]

Thus, for ! = (e, µ), the contribution of f−(q
2) is negligible, and the decay rate depends only on f+(q

2).
This is sometimes called “current conservation.”

As the leptons are “point” particles, we can evaluate the leptonic current using spinor wave functions. 
But D and B cannot be represented by spinors, i.e., the hadronic current is non-perturbative. However, it 
must transform as a 4-vector, and only two 4-vectors are available: PB

µ and PD
µ. Thus:

Contracting this with the leptonic current gives:

⇒  for l = e,µ, the contribution from f-(q2) is negligible, and decay rate depends only on f+(q2) form factor
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|Vub| via exclusive B® p ln

|Vub|  = (3.67 ± 0.09exp ± 0.12th) x 10-3

dΓ(B→π"ν)

dq2
=

G2
F

24π3
p∗3|Vub|2 f2

+(q
2)

f+(q
2) =

1

(1 − q2/M2
B∗)

3∑

k=0

bk

[

zk − (−1)k
k

4
z4

]

where z =

√
t+ − q2 −

√
t+ − t0

√
t+ − q2 +

√
t+ − t0

,

t+ = (MB +Mπ)
2 = 29.4 GeV2,

t0 = (MB + Mπ)
(√

MB −
√
Mπ

)2
= 20.1 GeV2

Bourrely, Caprini, Lellouch, 
PRD 79, 013008 (2009)

Fit q2 spectrum + LCSR + LQCD for BCL parameters and |Vub|:
LQCD: Aoki (FLAG), EPJC 82 (2022) 869)
LCSR:  Bharucha, JHEP 05, 092, (2012) 
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 BaBar untagged, Phys. Rev. D86, 092004 (2012) +& B0 B   
 BaBar untagged, Phys. Rev. D83, 032007 (2011) +& B0 B   
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|Vcb| from B® D(*)ln

New kinematic variable w (rather than q2 ):

q2 ≈ 0 →  w =  wmax 
                    = (MB

2 + MD*
2

 )/(2MBMD* ) 
                    = 1.6 

Two extreme situations:

q2 = q2
max = (MB - MD* )2 

                 = 10.69 (GeV)2
  → wmin = 1 

BD l ,n BD
nl 

(LCSR reliable, LQCD not) (“zero recoil” : LQCD reliable, LCSR not)

w ≡
PB · PD∗

MB MD∗
=

−(PB − PD∗)2 + P 2
B + P 2

D∗

2MB MD∗
=

M2
B + M2

D∗ − q2

2MB MD∗

[Recall that q2 = (PB − PD∗)
2 = (P! + Pν)

2 ]
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|Vcb| from B® D(*)ln

w ≡ vB · vD =
M2

B + M2
D − q2

2MBMD

B® D*ln  
decay rate: form factor

dΓ

dw
=

G2
F

48π3
M3

D∗(MB − MD∗)
2
√
w2 − 1 (w + 1)2|Vcb|2η2

EW F 2(w)

F 2(w) = h2
A1

(w)




2

[
1 − 2wr + r2

(1 − r)2

] [
1 + R2

1(w)(w − 1)
]
+

[

1 + (1 − R2(w))
w − 1

1− r

]2



where r = MD∗/MB

hA1
(z) = hA1

(1)
[
1 − 8ρ2z + (53ρ2 − 15)z2 − (231ρ2 − 91)z3

]

R1(w) = R1(1)− 0.12(w − 1) + 0.05(w − 1)2

R2(w) = R2(1)− 0.11(w − 1) + 0.06(w − 1)2

Caprini, Lelouch, 
Neubert:

dΓ

dw
=

G2
F

48π3
M3

D(MB + MD)2(w2 − 1)3/2 |Vcb|2η2
EW G2(w)

G(w→z) = G(1)
[
1 − 8ρ2z + (51ρ2 − 10)z2 − (252ρ2 − 84)z3

]

where z = (
√
w + 1 −

√
2)/(

√
w + 1 +

√
2)
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|Vcb| from B® D*ln

Using F(1) = 0.906 ±0.013  [MILC, PRD 89, 114504, (2014)]
hEW  = 1.0066 ±0.0050  [Sirlin, Nucl. Phy. B196, 83 (1982)]

Result:

711 fb-1 Waheed at al. (Belle), PRD
100, 052007 (2019)

hEW F(1) |Vcb| = (35.06 ± 0.58) x 10-3

Advantages over B® Dln : 
• (2.2-2.4)x larger branching fraction
• hadronic tag reconstruction not needed due to D* 
⇒ much higher statistics (180k signal events, vs. 17k for B® Dln )

Statistics are high enough to fit the w, cosql , cosqV , c distributions 

to fully differential decay rate

18

B
W D*!

" #s

$
l

$
V

D0

l

Figure 2.3: [B → D∗!ν decay geometry] Geometry of B → D∗!ν decays.

The differential decay rate is given by

dΓ(B→D∗!ν)
dwdcosθV dcosθ!dχ =

3G2
F

4(4π)4 |Vcb|2mBm2
D∗

√
w2 − 1(1 − 2wr + r2)×

[(1 − cosθ!)2sin2θV |H+(w)|2

+(1 + cosθ!)2sin2θV |H−(w)|2

+4sin2θ!cos2θV |H0(w)|2

−4sinθ!(1 − cosθ!)sinθV cosθV cosχH+(w)H0(w)

+4sinθ!(1 + cosθ!)sinθV cosθV cosχH−(w)H0(w)

−2sin2θ!sin
2θV cos2χH+(w)H−(w)]

where Hi(w) are called the helicity form factors. These form factors are related to

another set of form factors, hV (w), hA1(w), hA2(w) and hA3(w), as follows.

Hi = −mB
R(1 − r2)(w + 1)

2
√

1 − 2wr + r2
hA1(w)H̃i(w) (2.19)

where H̃i(w) are given by

H̃±(w) =
√

1−2wr+r2

1−r

(
1 ∓

√
w−1
w+1R1(w)

)

H̃0(w) = 1 + w−1
1−r (1 − R2(w))

(2.20)

dΓ(B0→D∗−!+ν)

dw dcos θ! dcos θV dχ
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|Vcb| = (38.4 ± 0.63exp ± 0.6theor) x 10-3
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Inclusive |Vcb| Gambino and Schwanda, 
PRD 89, 014022 (2014)

Y. Amhis et al. (Heavy Flavor 
Averaging Group), EPJC 81, 226 (2021)

An “inclusive” search means B® Xc ln :, where Xc denotes final state hadrons containing 
charm.
• Experimentally, no specific final state is reconstructed. Statistics are high, but 

backgrounds are high
• Theoretically, one calculate a b ® c transition, not a <D*|H|B> matrix element 

(parameterized by form factors). Typically this gives less theoretical uncertainty
• a decay mode with a specific final state is called an “exclusive” decay

Strategy: the inclusive b ® clv decay rate is calculated using the Heavy Quark Expansion. This is a double 
expansion in small (perturbative) parameters as and (LQCD/mb ). The expansion depends on unknown B 
matrix elements of local operators. However, these matrix elements also determine moments of the lepton 
energy and recoil hadronic mass in B® X ln  decays. The moment distributions have been measured (Belle, 
Babar), and thus one can fit the moment distributions and the measured width for B® X ln  to extract |Vcb|

〈En
! 〉 =

∫ Emax

Ecut

dE! (E!)
n dΓ

dE!∫ Emax

Ecut

dE!

dΓ

dE!
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|Vcb| = (42.19 ± 0.78) x 10-3   (kinetic scheme)

|Vcb| = (41.98 ± 0.45) x 10-3   (1S scheme)

9. The Decay B æ Xu¸‹

The B meson, being the lightest meson containing a b quark, can only decay via the weak
interaction. In the following I discuss the semileptonic decay B æ Xu¸‹, where the final
state consists of a hadronic (Xu) and a leptonic (¸‹) system.

At the energy scale of the B meson mass the propagator term of the virtual W± boson
can be integrated out and the weak interaction is described by the e�ective coupling GF
together with the corresponding CKM matrix elements. However, at this energy scale
the bound state of the two quarks, of which the B meson is composed, is described by
non-perturbative QCD. In case the virtual W± boson decays into a lepton and neutrino
pair there exists no strong interaction between the decay products of the W± and the
hadronic system Xu. Therefore it is possible to factorize the strong and weak interaction
contributions and treat them separately.

The e�ective Standard Model (SM) Lagrangian describing these decays is given by

Le� = ≠4GF
Ô

2
Vub(u“µPLb)(‹“

µ
PL¸) + h.c., (9.1)

with Fermi’s constant GF, the CKM matrix element Vub and the projection operator
PL = (1 ≠ “5)/2. The decay B æ fi¸‹ is shown at parton level and as an e�ective diagram
in Figure 9.1.

b u

d d

⌫

`+

W
+

B
0 ⇡�

(a) Parton level Feynman diagram.

B
0 ⌫

`+

⇡�

(b) E�ective Feynman diagram.

Figure 9.1.: One possible parton level Feynman diagram (a) and the e�ective Feynman
diagram (b). In the e�ective Feynman diagram, the propagator of the W is
integrated out, i.e. the weak interaction is point-like, and the gluon interactions
are described by the blob.
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B0 Xu

u
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b
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V*ub
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are described by the blob.

79

B0 Xc

c
d

b
d

V*cb



A. J. Schwartz  US Belle II Summer School 2023  The CKM Matrix   15

Inclusive |Vub| Y. Amhis et al. (Heavy Flavor 
Averaging Group), EPJC 81, 226 (2021)

Very challenging to measure B® Xu ln  (Xu denotes final state hadrons not coming 
charm), because B® Xc ln  background is ~50x larger and swamps the signal. 

Strategy: fit data in limited regions of MX, El , and q2 where B® Xc ln background is suppressed, e.g., at 
lower values of MX , higher values of El , and higher values of q2. Requiring such limited phase space regions 
complicates the perturbatve QCD calculations needed to extract |Vub| from the measured rate. Different 
theoretical models use different parameterizations of the “shape functions” needed to evaluate the 
unmeasured regions of phase space. Five theory models are commonly used: BLNP, DGE, GGOU, ADFR, 
and BLL, but no theoretical approach is preferred over the others.  

To beat down B® Xcln , Belle uses a sophisticated BDT 
based on Mmiss

2, finding a soft p+ from D* decay, number 
of kaons, Bsig vertex, and Qtot . Cutting on BDT output 
rejects 98.7% of Xcln , keeping 18% of Xu ln :
[Cao et al. (Belle), PRD 104, 012008 (2021)]
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9. The Decay B æ Xu¸‹

The B meson, being the lightest meson containing a b quark, can only decay via the weak
interaction. In the following I discuss the semileptonic decay B æ Xu¸‹, where the final
state consists of a hadronic (Xu) and a leptonic (¸‹) system.

At the energy scale of the B meson mass the propagator term of the virtual W± boson
can be integrated out and the weak interaction is described by the e�ective coupling GF
together with the corresponding CKM matrix elements. However, at this energy scale
the bound state of the two quarks, of which the B meson is composed, is described by
non-perturbative QCD. In case the virtual W± boson decays into a lepton and neutrino
pair there exists no strong interaction between the decay products of the W± and the
hadronic system Xu. Therefore it is possible to factorize the strong and weak interaction
contributions and treat them separately.

The e�ective Standard Model (SM) Lagrangian describing these decays is given by

Le� = ≠4GF
Ô

2
Vub(u“µPLb)(‹“

µ
PL¸) + h.c., (9.1)

with Fermi’s constant GF, the CKM matrix element Vub and the projection operator
PL = (1 ≠ “5)/2. The decay B æ fi¸‹ is shown at parton level and as an e�ective diagram
in Figure 9.1.
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Figure 9.1.: One possible parton level Feynman diagram (a) and the e�ective Feynman
diagram (b). In the e�ective Feynman diagram, the propagator of the W is
integrated out, i.e. the weak interaction is point-like, and the gluon interactions
are described by the blob.
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Inclusive |Vub| Y. Amhis et al. (Heavy Flavor 
Averaging Group), EPJC 81, 226 (2021)

taken as that obtained with the GGOU calculation.

Table 89: Summary of measurements of partial branching fractions for B ! Xu`+⌫` decays.
The errors quoted on �B correspond to statistical and systematic uncertainties. Ee is the
electron energy in the B rest frame, p⇤ the lepton momentum in the B frame and mX is the
invariant mass of the hadronic system. The light-cone momentum P+ is defined in the B rest
frame as P+ = EX � |~pX |. The smax

h variable is described in Refs. [562,563].

Measurement Accepted region �B[10�4] Notes
CLEO [564] Ee > 2.1GeV 3.3± 0.2± 0.7

BABAR [563] Ee > 2.0 GeV, smax
h < 3.5GeV2 4.4± 0.4± 0.4

BABAR [560] Ee > 1.0GeV 1.55± 0.08± 0.09 Using the GGOU model
Belle [565] Ee > 1.9GeV 8.5± 0.4± 1.5

BABAR [555] MX < 1.7GeV/c2, q2 > 8GeV2/c4 6.9± 0.6± 0.4

Belle [566] MX < 1.7GeV/c2, q2 > 8GeV2/c4 7.4± 0.9± 1.3

Belle [567] MX < 1.7GeV/c2, q2 > 8GeV2/c4 8.5± 0.9± 1.0 Used only in BLL average
BABAR [555] P+ < 0.66GeV 9.9± 0.9± 0.8

BABAR [555] MX < 1.7GeV/c2 11.6± 1.0± 0.8

BABAR [555] MX < 1.55GeV/c2 10.9± 0.8± 0.6

Belle [554] (MX , q2) fit, p⇤
`
> 1 GeV/c 19.6± 1.7± 1.6

BABAR [555] (MX , q2) fit, p⇤
`
> 1 GeV/c 18.2± 1.3± 1.5

BABAR [555] p⇤
`
> 1.3 GeV/c 15.5± 1.3± 1.4

6.4.1 BLNP

Bosch, Lange, Neubert and Paz (BLNP) [568–571] provide theoretical expressions for the triple
differential decay rate for B ! Xu`+⌫` events, incorporating all known contributions, whilst
smoothly interpolating between the “shape-function region” of large hadronic energy and small
invariant mass, and the “OPE region” in which all hadronic kinematical variables scale with the
b-quark mass. BLNP assign uncertainties to the b-quark mass, which enters through the leading
shape function, to sub-leading shape function forms, to possible weak annihilation contribu-
tion, and to matching scales. The BLNP calculation uses the shape function renormalization
scheme; the heavy quark parameters determined from the global fit in the kinetic scheme, de-
scribed in 6.2.2, were therefore translated into the shape function scheme by using a prescription
by Neubert [572, 573]. The resulting parameters are mb(SF) = (4.582 ± 0.023 ± 0.018) GeV,
µ2
⇡
(SF) = (0.202 ± 0.089+0.020

�0.040) GeV/c2, where the second uncertainty is due to the scheme
translation. The extracted values of |Vub| for each measurement along with their average are
given in Table 90 and illustrated in Fig. 64(a). The total uncertainty is +5.6

�5.7% and is due to:
statistics (+1.8

�1.9%), detector effects (+1.7
�1.7%), B ! Xc`+⌫` model (+0.9

�1.0%), B ! Xu`+⌫` model
(+1.5
�1.5%), heavy quark parameters (+2.7

�2.8%), SF functional form (+0.1
�0.3%), sub-leading shape func-

tions (+0.8
�0.8%), BLNP theory: matching scales µ, µi, µh (+3.8

�3.8%), and weak annihilation (+0.0
�0.7%).

The error assigned to the matching scales is the source of the largest uncertainty, while the
uncertainty due to HQE parameters (b-quark mass and µ2

⇡
) is second. The uncertainty due to

weak annihilation is assumed to be asymmetric, i.e. it only tends to decrease |Vub|.

173

Belle (2021)      El  > 1.0 GeV                                       15.9 ± 0.7 ± 1.6                                     

|Vub| =

√√√√ ∆B(B→Xu!
+ν)

τB · ∆Γth(B→Xu!
+ν)

Using GGOU 
for DGth :

Cao et al. (Belle), PRD 104, 012008 (2021): 

|Vub| (BLNP) =
(
4.05 ± 0.09 +0.20

−0.21
+0.18
−0.20

)
× 10−3

|Vub| (DGE) =
(
4.16 ± 0.09 +0.21

−0.22
+0.11
−0.12

)
× 10−3

|Vub| (GGOU) =
(
4.15 ± 0.09 +0.21

−0.22
+0.08
−0.09

)
× 10−3

|Vub| (ADFR) =
(
4.05 ± 0.09 +0.20

−0.21 ± 0.18
)
× 10−3

]-3 10×|  [ub|V
2 4 6

) eCLEO (E
 0.49 + 0.22 - 0.31±4.23 

) 2, q
X

BELLE sim. ann. (m
 0.47 + 0.25 - 0.28±4.52 

) eBELLE (E
 0.46 + 0.16 - 0.21±4.95 

) eBABAR (E
 0.17± 0.10 ±3.96 

>1)
l

 fit, (E2,qXBELLE m
 0.24 + 0.08 - 0.09±4.15 

<1.55) XBABAR (m
 0.20 + 0.20 - 0.21±4.30 

<1.7) XBABAR (m
 0.23 + 0.16 - 0.17±4.10 

>8) 2<1.7, qXBABAR (m
 0.23 + 0.24 - 0.27±4.33 

<0.66) +BABAR (P
 0.26 + 0.26 - 0.27±4.25 

 fit, p*>1GeV) 2, q
X

BABAR (m
 0.24 + 0.09 - 0.10±4.44 

BABAR (p*>1.3GeV) 
 0.27 + 0.09 - 0.11±4.43 

Average +/- exp + theory - theory
 0.12 + 0.11 - 0.12±4.19 

HF�A�
2021

P. Gambino, P. Giordano, G. Ossola, N. Uraltsev
JHEP 0710:058,2007 (GGOU)

/dof = 15.1/10 (CL = 13.00 %)2χ
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Putting all together: Inclusive vs. Exclusive |Vcb |, |Vub |

Exclusive (x 10-2) Inclusive (x 10-2) Difference

|Vcb| 3.846 ± 0.040 ± 0.055 (D*ln  CLN)
3.83 ± 0.07 ± 0.06 (D*ln  BGL [Belle])
3.958 ± 0.094 ± 0.037 (Dln)

4.219 ± 0.078 (kinetic scheme)
4.198 ± 0.045 (1S scheme)

2.2–3.3 s

|Vub| 0.367 ± 0.015 (pln) 0.419 ± 0.012 ± 0.012 (GGOU)
0.428 ± 0.013 ± 0.020 (BLNP)

2.2-2.3 s

Lattice results used:
Bailey et al. (MILC), PRD 89, 114504 (2014)
Bailey et al. (MILC), PRD 92, 034506 (2015)
Bailey et al. (MILC), PRD 92, 014024 (2015)
Flynn et al., (RBC/UKQCD) PRD 91, 074510 (2015)
Harrison et al. (HPQCD), PRD 97, 054502 (2018)

Aoki (FLAG), EPJC 82 (2022) 869
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Summary of CKM measurements

• |Vcb| is measured via exclusive B® D*ln and B® Dln decays. Uncertainty arises from 
form factors, of which there are two common choices: CLN and BGL

• |Vcb| is measured via inclusive B® Xc ln decays and using HQE. Uncertainty arises from 
matrix elements of local operators. These are determined by fitting moment distributions. 
Two theory schemes available: kinetic scheme and 1S scheme.

• The measurements differ: inclusive |Vcb| is higher than exclusive by 2.2-3.3s

• |Vub| is measured via exclusive B® p ln decays. Uncertainty arises from form factors, of 
which there is one common choice: BCL

• |Vcb| is measured via inclusive B® Xu ln decays. Many cuts are made to reduce huge B® 
Xc ln background, and this makes it challenging to theoretically predict the rate. Five 
theory schemes available: BLNP, DGE, GGOU, ADFR, and BLL.

• The measurements differ: inclusive |Vub| is higher than exclusive by 2.2-2.3s

• |Vcs| is measured via exclusive Ds
+® l +n and D® K ln decays. Uncertainty arises from decay 

constants and form factors, respectively. Results agree. D® K ln has much higher statistics, 
but theory error from form factors is was larger, so overall precision is was worse. 

• |Vcd| is measured via exclusive D+® l +n and D® p ln decays. Uncertainty arises from decay 
constants and form factors, respectively. Results agree. D® p ln has much higher statistics, 
but theory error from form factors is was larger, so overall precision is was worse. 

• Strong competition from BESIII (!)
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|Vcb| from B® Dln

B→Dℓν Reconstruction:

After tag side reconstructed, tracks are “removed” and signal side D reconstructed. After D reconstructed, e or µ is 
added to decay and missing mass calculated:

Missing mass spectrum (in bins of w) is fit for signal yield; from signal
yield one calculates DG/Dw. 

M2
miss =

(
Pbeam − PD − P!

)2

B0 → D+e- ν (2848 signal events)

1.00 < w <1.06 1.36 < w <1.42 1.54 < w <1.60

711 fb-1 Glattauer at al. (Belle), PRD
93, 032006 (2016)


