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Introduction
● Different types of machine learning models:

– Neural Networks (NNs)
– Decision trees and random forests
– Various unsupervised learning methods

● Unsupervised methods (e.g. clustering) learn without using 
labeled training data

– Many more



  

Neural Networks



  

Artificial Neural Networks
● Models that are inspired by biological neural 

networks (like the brain), i.e. connections of 
biological neurons and their behavior

Source

https://medium.com/@nusfintech.ml/neural-networks-theory-use-cases-code-implementations-and-more-9fb76b2d0fb4


  

Artificial Neural Networks
● Universal Approximation Theorem: Very simply 

and approximately, this says that neural networks 
can approximate any continuous function
– If there there is a mapping between a set of features 

and some label/output, the neural network should be 
able to approximate it.

– This function can be a function of many variables.



  

Artificial Neural Networks
● ANNs can be used for classification or regression.

– Classification: Predict a class label such as cat vs dog, 
signal vs background, SM vs NP

● These are examples of binary classification, but can do multi-
class classification, such as with the famous MNIST dataset; 
common use of machine learning in HEP

– Regression: Predict a continuous value such as the 
length of a flower petal.



  

Artificial Neural Networks
● There are several types of artificial neural 

networks (ANNs)
– Fully-connected Networks (FCN; today’s exercise)
– Convolutional Neural Networks (CNN; computer vision)

● https://arxiv.org/abs/1512.03385
– Graph Neural Networks (GNN; used in Belle II)

● https://arxiv.org/abs/2306.04179



  

Artificial Neural Networks
● Fully-connected network: when the neurons 

in each layer are connected to all neurons in 
the previous layer
– Fully-connected or dense layers
– Connections between neurons are given by weights



  

Fully-Connected Networks
● Have at least an input layer, where whatever is 

given to it is simply passed through unaltered, 
and an output layer, which performs the 
predictive task.



  

Fully-Connected Networks
● In between the input and output layers can be 

any number of hidden layers, which perform 
intermediate computations on their inputs and 
help obtain the mapping
– A rule of thumb is that a neural network is deep is if 

it has more than two hidden layers



  

Fully-Connected Networks

https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch04.html



  

Fully-Connected Networks

https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch04.html

input/output layers

hidden layers connections



  

Inner Workings
● The output of a layer (except the input layer) is 

given by



  

Inner Workings
● The output of a layer (except the input layer) is 

given by

Input feature matrix



  

Inner Workings
● The output of a layer (except the input layer) is 

given by

Weight matrix



  

Inner Workings
● The output of a layer (except the input layer) is 

given by

bias matrix; add flexibility to the model and
allows the model to understand more complicated
relationship



  

Inner Workings
● The output of a layer (except the input layer) is 

given by

activation function



  

Activation Functions
● Activation functions perform the transformations
● Add non-linearity into the model

– Helps neural networks model different functions
● Different activation functions for different tasks



  

Activation Functions
● Sigmoid function is a common choice for binary 

classification
– Saturates at 0 and 1.

● Softmax function is a
common choice for
multi-class classification



  

Learning

● How does all this lead to learning?



  

Learning
● Goal: optimize/minimize a cost/loss function

– e.g. 

https://en.wikipedia.org/wiki/Mean_squared_error



  

Learning
● Goal: optimize/minimize a cost/loss function

– e.g. 

https://en.wikipedia.org/wiki/Mean_squared_error

There are other loss functions 
that may be better for certain 
tasks like binary classification
(e.g. binary cross-entropy)



  

Learning
● Use an optimization algorithm like gradient descent (GD) to 

gradually alter parameters that minimize the loss function.
● GD measures gradient wrt to a parameter vector θ, and 

moves in the direction of steepest gradient
– When gradient is zero, you are at a minimum – hopefully global, 

not local minimum.
● The goal is to reach a global minimum and not get stuck in a local one

– Loss functions therefore need to be smooth and convex



  

Learning
● There are other optimizers, e.g.

– Stochastic Gradient Descent (SDG): computes gradient based on 
random instant of training set

– Adaptive Moment Estimation (Adam)
– Nesterov-accelerated Adaptive Moment Estimation (Nadam)
– Many more



  

Learning
● Importantly, there is a parameter called the learning rate 

(LR) η that affects how optimization algorithms perform.
● The LR controls how much of an adjustment to make to 

the parameters during learning.
● If the LR is too high, then GD will bounce around the 

minimum and not converge; too low and it will take too 
long to converge and you could get stuck in a local 
minimum.



  

Learning
● The learning rate is an example of a hyperparameter.
● A hyperparameter is a parameter of the learning 

algorithm and determines behavior and architecture.
– A few examples are the learning rate, number of hidden 

layers, and the number of neurons
● This is in contrast to model parameters such as weights 

and biases that are affected by the learning algorithm.



  

Learning
● If “f” is the loss function, then the gradient 

descent step is given by

“Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow (Concepts, Tools, and Techniques to Build Intelligent Systems)” by Aurelien Geron



  

Learning
● If the information flows from only input to output, then this is called a feedforward 

neural network.
● The process of backpropagation is added to this to efficiently compute the gradients 

of the loss.  Very approximately, it is
– Forward pass and make prediction
– Determine error
– Error gradient is propagated backward and the error contribution from each layer is determined
– GD is used to modify weights

● Loss and activation functions need to be differentiable
● The learning process is an iterative one that repeats many times.



  

Problems with Learning
● Vanishing or exploding gradients: 

● Vanishing – gradient becomes too small during 
backpropagation and the model doesn’t learn; can be 
mitigated by e.g. choosing a better activation function

● Exploding – gradients become exceedingly large, causing 
instability in the model; can mitigate by e.g. tweaking 
learning rate, changing activation, or, in deep CNNs, adding 
a “skip” connection (ResNet, outside of today’s scope)



  

Problems with Learning
● Overfitting – the model memorizes features and patterns of the training set and cannot generalize to data it 

hasn’t seen before (test data)
– Can be mitigated by adding more training data 
– make your model simpler
– Use early stopping
– Add a dropout layer
– etc

● Underfitting – the model doesn’t learn
– Check if the model can overfit on a few training events/instances, maybe 1-10 events
– Introduce or engineer other features
– Alter model architecture
– Add more training data
– Select additional or different features
– etc



  

Hands-on Exercise



  

Hands-on Exercise
● Your mission, should you choose to accept it, is 

to classify the continuum background in B → K 
pi0 decays.

● But what is continuum background?



  

Hands-on Exercise
● Continuum background comes from the 

process e+e- → qq (q = u, d, s, c).



  

Hands-on Exercise

https://software.belle2.org/development/sphinx/online_book/basf2/cs.html



  

Hands-on Exercise
● Use features of the event topology to build a (binary) 

classifier in Tensorflow/Keras
● It is up to you to choose the appropriate features

– Think wisely about what to use (e.g. do we use event 
shape variables or something else?)

● Main objective: train the neural network to 
distinguish between B events and continuum events.



  

Hands-on Exercise

https://software.belle2.org/development/sphinx/online_book/basf2/cs.html



  

Hands-on Exercise

https://software.belle2.org/development/sphinx/online_book/basf2/cs.html

We have KSFW moments for this
exercise.



  

Hands-on Exercise

https://software.belle2.org/development/sphinx/online_book/basf2/cs.html

Go here for more variable/feature suggestions



  

Hands-on Exercise
● We will implement a competition

– The team with the best evaluation metrics will win a prize
– Teams are max 3 people each
– Evaluation will be done with AUC
– Use the Jupyter notebook to produce a list of predictions for 

each event in the test set and submit it to the Kaggle page.
● Code is already written for you.



  

Hands-on Exercise



  

Hands-on Exercise
Receiver Operating Characteristics



  

Hands-on Exercise

FPR – False Positive Rate

TPR – True Positive Rate



  

Hands-on Exercise

AUC – Area Under Curve



  

Hands-on Exercise

50-50 Line – Random Guess
Always want to be above this line 



  

Hands-on Exercise

Want AUC closer to 1 



  

Hands-on Exercise

If ROC curve’s at 50-50 line, 
classifier is no 
better than a coin flip 



  

Hands-on Exercise

Different AUC for both
curves is an indication
of overfitting 



  

Hands-on Exercise



  

Hands-on Exercise
1) Navigate to the Kaggle page and follow the 

instructions.  You will need to sign in. 
https://www.kaggle.com/t/1892b4abfb5e4b46bc8f9b0acf70d550

https://www.kaggle.com/t/1892b4abfb5e4b46bc8f9b0acf70d550


  

Hands-on Exercise
● You must…

1) Download the Jupyter notebook from the Indico page or  
~sdubey/public/US_BelleII_Summer_Workshop_2023/notebooks 
on KEKCC

2) Download the training and test data csv files from the Kaggle 
page, Indico, or 
~sdubey/public/US_BelleII_Summer_Workshop_2023/data on 
KEKCC

3) Open the notebook and be sure to read the markdown cells.



  

Hands-on Exercise
1) Follow each code cell

1)Select your features
2) Build you model

1)There is a build_model() function whose hyperparameters and optimizers you can modify
1)You can do this by hand, or if ambitious, use scikit-learn’s GridSearchCV or RandomSearchCV to 

select your hyperparameters (Keras has something similar called Keras Tuner)
2) You will have to write the code for this yourself but it is not required.

2) The notebook will output a CSV file with a column for event IDs and a column 
for the classifier prediction for each value.
1)You will upload this to the Kaggle page as your competition submission
2)You are able to make 20 submissions per day.  So you can improve your score if you 

want



  

Hands-on Exercise
1) WARNING!  DOING A SEARCH FOR BEST 

HYPERPARAMETERS USING THESE FUNCTIONS 
MAY TAKE A LONG TIME, DEPEDING ON THE 
PARAMETER SPACE YOU SEACH.

2) GridSearchCV, for example, does not scale well as it 
performs an exhaustive search; RandomSearchCV is 
better, as it randomly selects from the parameter space, 
but may still take a while.



  

Hands-on Exercise
● If this seems daunting, don’t worry, most of this 

has been implemented for you in the Jupyter 
notebook (except the parameter tuner 
implementations).

● All you have to do is fill in the blanks with 
whatever you think is best.



  

Hands-on Exercise

You will produce a file that looks like this
Notebook produces it for you.
To be submitted to Kaggle.



  

Hands-on Exercise



  

Hands-on Exercise
● If you have questions, just ask.
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