

Machine Learning Hands-on
Shawn Dubey

Belle II Summer Workshop
Duke University

07/25/2023

Introduction by ChatGPT

Introduction
● Different types of machine learning models:

– Neural Networks (NNs)
– Decision trees and random forests
– Various unsupervised learning methods

● Unsupervised methods (e.g. clustering) learn without using
labeled training data

– Many more

Neural Networks

Artificial Neural Networks
● Models that are inspired by biological neural

networks (like the brain), i.e. connections of
biological neurons and their behavior

Source

https://medium.com/@nusfintech.ml/neural-networks-theory-use-cases-code-implementations-and-more-9fb76b2d0fb4

Artificial Neural Networks
● Universal Approximation Theorem: Very simply

and approximately, this says that neural networks
can approximate any continuous function
– If there there is a mapping between a set of features

and some label/output, the neural network should be
able to approximate it.

– This function can be a function of many variables.

Artificial Neural Networks
● ANNs can be used for classification or regression.

– Classification: Predict a class label such as cat vs dog,
signal vs background, SM vs NP

● These are examples of binary classification, but can do multi-
class classification, such as with the famous MNIST dataset;
common use of machine learning in HEP

– Regression: Predict a continuous value such as the
length of a flower petal.

Artificial Neural Networks
● There are several types of artificial neural

networks (ANNs)
– Fully-connected Networks (FCN; today’s exercise)
– Convolutional Neural Networks (CNN; computer vision)

● https://arxiv.org/abs/1512.03385
– Graph Neural Networks (GNN; used in Belle II)

● https://arxiv.org/abs/2306.04179

Artificial Neural Networks
● Fully-connected network: when the neurons

in each layer are connected to all neurons in
the previous layer
– Fully-connected or dense layers
– Connections between neurons are given by weights

Fully-Connected Networks
● Have at least an input layer, where whatever is

given to it is simply passed through unaltered,
and an output layer, which performs the
predictive task.

Fully-Connected Networks
● In between the input and output layers can be

any number of hidden layers, which perform
intermediate computations on their inputs and
help obtain the mapping
– A rule of thumb is that a neural network is deep is if

it has more than two hidden layers

Fully-Connected Networks

https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch04.html

Fully-Connected Networks

https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch04.html

input/output layers

hidden layers connections

Inner Workings
● The output of a layer (except the input layer) is

given by

Inner Workings
● The output of a layer (except the input layer) is

given by

Input feature matrix

Inner Workings
● The output of a layer (except the input layer) is

given by

Weight matrix

Inner Workings
● The output of a layer (except the input layer) is

given by

bias matrix; add flexibility to the model and
allows the model to understand more complicated
relationship

Inner Workings
● The output of a layer (except the input layer) is

given by

activation function

Activation Functions
● Activation functions perform the transformations
● Add non-linearity into the model

– Helps neural networks model different functions
● Different activation functions for different tasks

Activation Functions
● Sigmoid function is a common choice for binary

classification
– Saturates at 0 and 1.

● Softmax function is a
common choice for
multi-class classification

Learning

● How does all this lead to learning?

Learning
● Goal: optimize/minimize a cost/loss function

– e.g.

https://en.wikipedia.org/wiki/Mean_squared_error

Learning
● Goal: optimize/minimize a cost/loss function

– e.g.

https://en.wikipedia.org/wiki/Mean_squared_error

There are other loss functions
that may be better for certain
tasks like binary classification
(e.g. binary cross-entropy)

Learning
● Use an optimization algorithm like gradient descent (GD) to

gradually alter parameters that minimize the loss function.
● GD measures gradient wrt to a parameter vector θ, and

moves in the direction of steepest gradient
– When gradient is zero, you are at a minimum – hopefully global,

not local minimum.
● The goal is to reach a global minimum and not get stuck in a local one

– Loss functions therefore need to be smooth and convex

Learning
● There are other optimizers, e.g.

– Stochastic Gradient Descent (SDG): computes gradient based on
random instant of training set

– Adaptive Moment Estimation (Adam)
– Nesterov-accelerated Adaptive Moment Estimation (Nadam)
– Many more

Learning
● Importantly, there is a parameter called the learning rate

(LR) η that affects how optimization algorithms perform.
● The LR controls how much of an adjustment to make to

the parameters during learning.
● If the LR is too high, then GD will bounce around the

minimum and not converge; too low and it will take too
long to converge and you could get stuck in a local
minimum.

Learning
● The learning rate is an example of a hyperparameter.
● A hyperparameter is a parameter of the learning

algorithm and determines behavior and architecture.
– A few examples are the learning rate, number of hidden

layers, and the number of neurons
● This is in contrast to model parameters such as weights

and biases that are affected by the learning algorithm.

Learning
● If “f” is the loss function, then the gradient

descent step is given by

“Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow (Concepts, Tools, and Techniques to Build Intelligent Systems)” by Aurelien Geron

Learning
● If the information flows from only input to output, then this is called a feedforward

neural network.
● The process of backpropagation is added to this to efficiently compute the gradients

of the loss. Very approximately, it is
– Forward pass and make prediction
– Determine error
– Error gradient is propagated backward and the error contribution from each layer is determined
– GD is used to modify weights

● Loss and activation functions need to be differentiable
● The learning process is an iterative one that repeats many times.

Problems with Learning
● Vanishing or exploding gradients:

● Vanishing – gradient becomes too small during
backpropagation and the model doesn’t learn; can be
mitigated by e.g. choosing a better activation function

● Exploding – gradients become exceedingly large, causing
instability in the model; can mitigate by e.g. tweaking
learning rate, changing activation, or, in deep CNNs, adding
a “skip” connection (ResNet, outside of today’s scope)

Problems with Learning
● Overfitting – the model memorizes features and patterns of the training set and cannot generalize to data it

hasn’t seen before (test data)
– Can be mitigated by adding more training data
– make your model simpler
– Use early stopping
– Add a dropout layer
– etc

● Underfitting – the model doesn’t learn
– Check if the model can overfit on a few training events/instances, maybe 1-10 events
– Introduce or engineer other features
– Alter model architecture
– Add more training data
– Select additional or different features
– etc

Hands-on Exercise

Hands-on Exercise
● Your mission, should you choose to accept it, is

to classify the continuum background in B → K
pi0 decays.

● But what is continuum background?

Hands-on Exercise
● Continuum background comes from the

process e+e- → qq (q = u, d, s, c).

Hands-on Exercise

https://software.belle2.org/development/sphinx/online_book/basf2/cs.html

Hands-on Exercise
● Use features of the event topology to build a (binary)

classifier in Tensorflow/Keras
● It is up to you to choose the appropriate features

– Think wisely about what to use (e.g. do we use event
shape variables or something else?)

● Main objective: train the neural network to
distinguish between B events and continuum events.

Hands-on Exercise

https://software.belle2.org/development/sphinx/online_book/basf2/cs.html

Hands-on Exercise

https://software.belle2.org/development/sphinx/online_book/basf2/cs.html

We have KSFW moments for this
exercise.

Hands-on Exercise

https://software.belle2.org/development/sphinx/online_book/basf2/cs.html

Go here for more variable/feature suggestions

Hands-on Exercise
● We will implement a competition

– The team with the best evaluation metrics will win a prize
– Teams are max 3 people each
– Evaluation will be done with AUC
– Use the Jupyter notebook to produce a list of predictions for

each event in the test set and submit it to the Kaggle page.
● Code is already written for you.

Hands-on Exercise

Hands-on Exercise
Receiver Operating Characteristics

Hands-on Exercise

FPR – False Positive Rate

TPR – True Positive Rate

Hands-on Exercise

AUC – Area Under Curve

Hands-on Exercise

50-50 Line – Random Guess
Always want to be above this line

Hands-on Exercise

Want AUC closer to 1

Hands-on Exercise

If ROC curve’s at 50-50 line,
classifier is no
better than a coin flip

Hands-on Exercise

Different AUC for both
curves is an indication
of overfitting

Hands-on Exercise

Hands-on Exercise
1) Navigate to the Kaggle page and follow the

instructions. You will need to sign in.
https://www.kaggle.com/t/1892b4abfb5e4b46bc8f9b0acf70d550

https://www.kaggle.com/t/1892b4abfb5e4b46bc8f9b0acf70d550

Hands-on Exercise
● You must…

1) Download the Jupyter notebook from the Indico page or
~sdubey/public/US_BelleII_Summer_Workshop_2023/notebooks
on KEKCC

2) Download the training and test data csv files from the Kaggle
page, Indico, or
~sdubey/public/US_BelleII_Summer_Workshop_2023/data on
KEKCC

3) Open the notebook and be sure to read the markdown cells.

Hands-on Exercise
1) Follow each code cell

1)Select your features
2) Build you model

1)There is a build_model() function whose hyperparameters and optimizers you can modify
1)You can do this by hand, or if ambitious, use scikit-learn’s GridSearchCV or RandomSearchCV to

select your hyperparameters (Keras has something similar called Keras Tuner)
2) You will have to write the code for this yourself but it is not required.

2) The notebook will output a CSV file with a column for event IDs and a column
for the classifier prediction for each value.
1)You will upload this to the Kaggle page as your competition submission
2)You are able to make 20 submissions per day. So you can improve your score if you

want

Hands-on Exercise
1) WARNING! DOING A SEARCH FOR BEST

HYPERPARAMETERS USING THESE FUNCTIONS
MAY TAKE A LONG TIME, DEPEDING ON THE
PARAMETER SPACE YOU SEACH.

2) GridSearchCV, for example, does not scale well as it
performs an exhaustive search; RandomSearchCV is
better, as it randomly selects from the parameter space,
but may still take a while.

Hands-on Exercise
● If this seems daunting, don’t worry, most of this

has been implemented for you in the Jupyter
notebook (except the parameter tuner
implementations).

● All you have to do is fill in the blanks with
whatever you think is best.

Hands-on Exercise

You will produce a file that looks like this
Notebook produces it for you.
To be submitted to Kaggle.

Hands-on Exercise

Hands-on Exercise
● If you have questions, just ask.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

