







## Full Event Interpretation and beyond

### Belle II Summer Workshop Duke University – 26/07/2023

Jacopo Cerasoli jacopo.cerasoli@iphc.cnrs.fr

## Introduction

- Many Belle II measurements involve processes with missing energy:
  - $\cdot \quad B \to K^{(*)} \mathbf{v} \mathbf{v}$
  - $\cdot \quad B \to D \tau (\to X \mathbf{v}) \mathbf{v}$
  - $\cdot \quad B \to l \mathbf{v} \gamma$

...

- Quite some unique features at Belle II:
  - Knowledge of initial 4-momentum
  - · Good detector hermeticity
  - $: BR(Y(4S) \rightarrow B B) \sim 100 \%$





Jacopo Cerasoli

•  $\rightarrow$  Reconstruct *tag-side B* to constrain kinematics on signal-side

## How to reconstruct the $B_{\text{tag}}$ ?



- Full Event Interpretation (FEI) algorithm for HAD/SL tagging at Belle II:
  - · Hierarchical approach based on BDTs
  - Trained on MC  $Y(4S) \rightarrow B B$  events

## Full Event Interpretation Comput Softw Big Sci 3, 6 (2019)

- 1. Reconstruct final state particles using detector information
- 2. Combine final state particles into intermediates
- 3. Combine intermediates and FSPs into *B* candidates

- At each stage a BDT combines the information on candidate into a single number: signal probability
- Candidates from different decays are treated equally in following steps
- Signal probability is available to the next BDT
- FEI reconstructs *B* decays in ~ **10k modes**
- Last BDT interpreted as "B probability"
- Overall performances: ~ 1-2 % efficiency at ~ 5-10 % purity



## Reducing the combinatoric

• Intermediate cuts applied to reduce combinatoric and save computing time



Channel

## Training

- Each BDT trained to discriminate signal from incorrect candidates
- Latest training performed with 200 fb<sup>-1</sup> run independent MC15 (~ 220 M BB pairs)

| FSPs (charged + photons)                                                                                                                                                                                                                                                                                     | Intermediates                                                                                                                                                                                                                                                                                                                                                                        | B candidates                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>PIDs</li> <li>p, p<sub>T</sub>, p<sub>z</sub></li> <li>dr, dz</li> <li>chiProb</li> <li>Pre-cut ranking based on PID</li> <li>clusterReg</li> <li>clusterNHits</li> <li>clusterTiming</li> <li>clusterE9E25</li> <li>p<sub>T</sub>, E, p<sub>z</sub></li> <li>Pre-cut ranking based on E</li> </ul> | <ul> <li>Combination of inv. masses of decay products</li> <li>Angle between decay products</li> <li>Momenta of decay products</li> <li>chiProb of decay products</li> <li>Signal probability of decay products</li> <li>Angle between momentum and vertex vector</li> <li>Vertex χ<sup>2</sup></li> <li>Energy released Q, dQ</li> <li>Mass difference wrt nominal value</li> </ul> | <ul> <li>All variables used for intermediates (including signal probability)</li> <li>ΔE</li> <li>Flight distance and its significance</li> <li>dr, dz, dx, dy</li> </ul> |

#### **Input variables**

#### import basf2 as b2 Example from basf2 tutorial import modularAnalysis as ma from variables import variables as vm Trevor's slides: main = b2.Path() alysis-vincine than mdst, but have less events nalysis-oriented data and MC ma.inputMdst( , on skims & we are always looking for more help! will run much quicker if using skims! MC15rd partially available (almost done) "./fei skimmed xulnu.udst.root", Each WG has a skim liaison Takeaway: use skimsl umberto if interested See tomorrow: • $B^0 \rightarrow \pi^{-}/\rho^{-} l + v$ MC with **FEI skim** Signal-side $B^0 \rightarrow \pi^- \mu^+ \nu$ selection Y(4S) reconstruction Rest of event building • https://software.belle2.org/development/sphinx/online\_book/ basf2/fei.html

path=main. good track = ( "dr < 0.5 and abs(dz) < 2 and nCDCHits > 20 and thetaInCDCAcceptance" ma.fillParticleList("mu-", "muonID > 0.9 and " + good track, path=main) ma.fillParticleList("pi-", "pionID > 0.5 and " + good track, path=main) ma.reconstructDecay("B0:signal -> pi- mu+ ?nu", cut="", path=main) ma.reconstructDecay( "Upsilon(4S):opposite cp -> B0:generic anti-B0:signal", cut="", path=main ma.reconstructDecay( decayString="Upsilon(4S):same cp -> B0:generic B0:signal", path=main, # Combine the two Upsilon(4S) lists to one. Note: Duplicates are removed. ma.copyLists( outputListName="Upsilon(4S)", inputListNames=["Upsilon(4S):opposite cp", "Upsilon(4S):same cp"], path=main, ma.buildRestOfEvent("Upsilon(4S)", path=main) track based cuts = "thetaInCDCAcceptance and pt > 0.075 and dr < 2 and abs(dz) < 4" ecl based cuts = "thetaInCDCAcceptance and E > 0.05" roe mask = ("my mask", track based cuts, ecl based cuts) ma.appendROEMasks("Upsilon(4S)", [roe mask], path=main) ma.matchMCTruth(list name="Upsilon(4S)", path=main)

Jacopo Cerasoli

#### 26/07/2023

## Example from basf2 tutorial

- We look at the  $B^{\theta}$  recoil mass
- Should peak at 0 for signal events (neutrino)
- Broad tail in full sample (background events)



• Let's see if we can do better with the FEI

## Example from basf2 tutorial

0) Initial dataset

- 1) We can start requiring 0 charged tracks in the ROE (completeness constraint)
- 2) Then we cut on signal probability > 0.01
- 3) Finally on signal probability > 0.1





## **FEI metrics**



## FEI performances (Had)

BELLE2-NOTE-PH-2019-031 W. Sutcliffe, F. Bernlochner



## FEI calibration

- Efficiency does not agree between simulation and data because of:
  - **Branching fractions** of *B* and intermediate decays not well known
  - Data-MC differences of BDT variables
  - Tag-side particles have **no corrections** applied

- $\rightarrow$  Need to perform a *calibration* of the FEI:
  - Measure the yield of *B* decays in data and MC and extract a correction factor  $N_{data}/N_{MC}$
  - · Perform the calibration for various values of signal probability, tag-side decay mode and possibly other quantities

## Had FEI calibration with $B \rightarrow X l v$ samples

- Perform calibration using inclusive  $B \rightarrow X l v$  decays ( $l = e, \mu$ )
  - · Perform *B*-tagging using hadronic FEI
  - **Select lepton** from ROE with  $p^*_l > 1$  GeV
  - Perform **binned fit to**  $p^*_l$  to get yields in data and MC





#### BELLE2-NOTE-PH-2023-008 W. Sutcliffe, F. Bernlochner

## Had FEI calibration with $B \rightarrow X l v$ samples

BELLE2-NOTE-PH-2023-008 W. Sutcliffe, F. Bernlochner

- Mode-by-mode calibration factors for  $B^+$  and  $B^0$  and p > 0.001, using electron and muon channels
- Systematic and consistent tension between electron and muon channels
  - Still investigating, maybe due to  $K \rightarrow \mu$  fake rate or background in muon channel



## Had FEI calibration with $D^{(*)}\pi$ samples

- Calibrate the FEI by partially reconstructing  $B \rightarrow D^{(*)}\pi$  decays
  - · Perform *B*-tagging using hadronic FEI
  - Select pion with highest momentum from ROE
  - Fit recoil mass of the system



#### $B^+$ modes Sig prob > 0.001



## Had FEI calibration with $D^{(*)}\pi$ samples

• Mode-by-mode calibration factors for  $B^+$  and  $B^0$  using  $D\pi$  samples

#### BELLE2-NOTE-PH-2023-004 M. Liu, N. Rout, K. Trabelsi, V. S. Vobbilisetti



## Combination

• Combined calibration factors and example application jupyter notebook can be found on kekcc: /hsm/belle2/bdata/users/sutclw/fei calibration/hadronic FEI calibration factors

 $\overline{D}^0\pi^+$  $D^{-}\pi^{+}$  $P > 0.001, B^0$  $\overline{D}^0\pi^+\pi^0$  $D^{-}\pi^{+}\pi^{0}$  $P > 0.001, B^+$  $\overline{D}{}^0\pi^+\pi^+\pi^ \chi^2/n_{\rm dof}: 0.78$  $D^{-}\pi^{+}\pi^{+}\pi^{-}$  $\chi^2/n_{\rm dof}$  : 1.39  $\overline{D}{}^0\pi^+\pi^+\pi^-\pi^0$ p-value: 0.75  $D^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$ p-value: 0.1  $\overline{D}^{*0}\pi^+$  $\overline{D}{}^{0}\pi^{+}\pi^{-}$  $\overline{D}^{*0}\pi^+\pi^0$  $D^{*-}\pi^{+}$  $\overline{D}^{*0}\pi^+\pi^+\pi^ \overline{D}^{*} - \pi^{+} \pi^{0}$  $\overline{D}^{*0}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$  $\overline{D}^{*-}\pi^{+}\pi^{+}\pi^{-}$  $D^{-}\pi^{+}\pi^{+}$  $\overline{D}^{*-}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$  $D^{-}\pi^{+}\pi^{+}\pi^{0}$ е е μ  $\Lambda_c^- p \pi^+ \pi^ \Lambda_c^- p \pi^+ \pi^- \pi^+$ Dπ Dπ comb comb rest rest 0.2 0.4 0.8 1.0 1.2 0.2 0.4 1.0 1.2 0.0 0.6 1.4 0.0 0.6 0.8 1.4 Calibration Factor **Calibration Factor** 

## What comes next?

## B reconstruction using Graph Neural Networks

- Main limitation of FEI: channels need to be hard-coded
- Decay tree can be encoded in **rooted directed acyclic tree graph**
- Goal: use graph neural networks to inclusively reconstruct  $B_{tag}$ 
  - → Graph-based Full Event Interpretation (graFEI)

• Challenges:

•

- We only have information on FSPs
- · Variable number of FSPs
- · Unknown number of intermediates
- Solution: encode decay tree as FSP relations



## Lowest Common Ancestor (LCA) matrix

- Based on:
  - <u>Ilias Tsaklidis</u>' and <u>Lea Reuter</u>'s master theses
  - · Learning tree structures from leaves for particle decay reconstruction, Kahn et al 2022 Mach. Learn.: Sci. Technol. 3 035012



## GraFEI – Model description

- Model based on graph network blocks arXiv:1806.01261
- We input a fully connected graph, output graph has same structure with updated attributes



## GraFEI - Loss function



# $Loss = LCA + \alpha \cdot Particle IDs$

6-classes cross-entropy: 7-classes cross-entropy:

| $5 : B^0$                                | · 6:γ             |
|------------------------------------------|-------------------|
| $4:D^{(\pm)}{}_{(S)}{}^{\boldsymbol{*}}$ | • 5:p             |
| $3: D^{(\pm)}{}_{(S)}$                   | • 4 : K           |
| $2:K_{s}^{0}$                            | $\cdot$ 3: $\pi$  |
| 1 : $\pi^0$ , J/ $\psi$                  | · 2: μ            |
| 0 : background                           | • 1 : e           |
|                                          | $\cdot 0$ : other |

•

•

•

•

٠

•

## **GraFEI** – Training

- Model trained on mixed MC:  $\sim$ 3M decays for training +  $\sim$ 150k for evaluation
- Input features:
  - · Node-level: particle IDs, pt, pz, charge, dr, dz, clusterNHits, clusterTiming, clusterCharge
  - · Edge-level:  $cos(\theta)$  between momenta, DOCA between tracks



## GraFEI - B probability

- Having a **definition of "B probability"** analogous to FEI is needed
  - · Each LCA element has a corresponding probability of belonging to the predicted class
  - · Arithmetic mean of class probabilities defined as B probability

$$LCA = \begin{pmatrix} 0 & 3 & 5 \\ 3 & 0 & 5 \\ 5 & 5 & 0 \end{pmatrix} \longleftrightarrow \begin{pmatrix} 0 & 0.62 & 0.31 \\ 0.62 & 0 & 0.76 \\ 0.31 & 0.76 & 0 \end{pmatrix} \to 0.563$$

Jacopo Cerasoli

## GraFEI in action – Comparison with FEI

Applied on tag-side of  $B^0 \to D^- (\to K^+ \pi^- \pi^-) \mu^+ v$  candidates •



#### **Preliminary!**

25

## GraFEI – Full *Y*(4S) reconstruction

- Train the model on signal MC to reconstruct Y(4S) candidates
  - $\cdot \quad Used \sim 3M \; B^{\scriptscriptstyle 0} \to K^{* \scriptscriptstyle 0} \; vv \; signal \; MC \; events$
  - $\cdot \sim 2$  days training on a GPU Nvidia V100





• If you want to join us just send me a mail!







Jacopo Cerasoli

## Conclusions

- Take-home messages:
  - Belle II features allow to reconstruct the partner *B* produced in the event ٠
  - Reconstruction performed with **Full Event Interpretation** (use FEI skim ٠



- Overall performances:  $\sim 1-2$  % efficiency at  $\sim 5-10$  % purity ٠
- Calibration needed, performed as a function of decay mode and signal probability cut ٠

#### GraFEI could be a possible extension: ٠

- Based on graph neural network, reconstructs decay topology and particle IDs ٠
- Seems powerful when trained on signal MC, more investigation and documentation ongoing ٠

## BACKUP

## Belle II [arXiv:1011.0352]

- Multi-purpose detector @ SuperKEKB accelerator
- Focus on B, charm and  $\tau$  physics
- Collisions at center-of-mass energy of 10.58 GeV
  - ·  $\sigma(e^+e^- \rightarrow \Upsilon(4S)) \sim 1$  nb
  - $\cdot \mathcal{B}(\Upsilon(4S) \to B\bar{B}) \gtrsim 96\%$

- Will collect 50 ab<sup>-1</sup> at the end of operation (now  $\sim$  430 fb<sup>-1</sup>)
- Instantaneous luminosity world record: 4.7 x 10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup> (June 2022)





## graFEI on phasespace dataset [arXiv:2208.14924]

- "Perfect world" simulation generated with phasespace library
- Comparison of two GNN models:
  - Neural Relational Inference (NRI) [arXiv:1802.04687]
  - · Transformer encoder
- Hyperparameter optimisation with **Optuna**
- 4-momentum used as input feature
- Average 47.7 % perfectly predicted LCAG with NRI
  - $\cdot$  60.9 % for decays with up to 10 leaves, 94.2 % up to 6 leaves



