Machine Learning Current Projects @ Belle II

Isabel Haide isabel.haide@kit.edu

Lea Reuter lea.reuter@kit.edu

01 Introduction to Belle II MVA

- |

3

Why Multivariate?

Why not simply cut on variables?

• Correlations not visible

Lea Reuter (<u>lea.reuter@kit.edu</u>), Isabel Haide (<u>isabel.haide@kit.edu</u>)

8

Decision Trees

- Popular for classification and regression • tasks
 - Easy to understand/interpret
 - Fast training
 - Good with multivariate data
- Consecutive set of questions (nodes) •
- Final verdict is reached after given • maximum of nodes (leaf)
- Each question depends on the formerly • given answers
- Trained on maximizing separation gain • between nodes

Leaf

(Boosted) Decision Trees Is it Signal or Background?

- Single trees are often not very strong
- Combination of different trees
 - -> Random Forest
- Output is decided by majority vote
- Boosting:
 - Misclassified events are weighted higher
 - Future trees concentrate on misclassified events
 - Easy to overtrain
- Pruning: Reduce tree size by removing redundant nodes

• Idea: Tagging B-meson decay chains through BDTs

Given by FEI

- Idea: Tagging B-meson decay chains through BDTs
- Hierarchical Structure

• Probability of each candidate being correct is estimated by BDTs

- Idea: Tagging B-meson decay chains through BDTs
- Hierarchical Structure:
 - 1. Construction of final-state particles using reconstructed tracks and clusters

• Probability of each candidate being correct is estimated by BDTs

- Idea: Tagging B-meson decay chains through BDTs
- Hierarchical Structure:
 - 1. Construction of final-state particles using reconstructed tracks and clusters
 - 2. Combination of final-state particles to intermediate particles

• Probability of each candidate being correct is estimated by BDTs

- Idea: Tagging B-meson decay chains through BDTs
- Hierarchical Structure:
 - 1. Construction of final-state particles using reconstructed tracks and clusters
 - 2. Combination of final-state particles to intermediate particles

- Probability of each candidate being correct is estimated by BDTs
 - Classifier for intermediate particles uses signal probability of daughter particles as input features

- Idea: Tagging B-meson decay chains through BDTs
- Hierarchical Structure:
 - 1. Construction of final-state particles using reconstructed tracks and clusters
 - 2. Combination of final-state particles to intermediate particles
 - 3. Repeat 2. until final B candidates are formed
- Probability of each candidate being correct is estimated by BDTs
 - Classifier for intermediate particles uses signal probability of daughter particles as input features

PIER

Measurement of CP asymmetries and

branching-fraction ratios for $B^{\pm} \rightarrow DK^{\pm}$ and $D\pi^{\pm}$

with $D \to K_{\rm S}^0 K^{\pm} \pi^{\mp}$ using Belle and Belle II data corresponds to $\pm 3\sigma$ around the known K^0 mass [30], with σ being the mass resolution. To

improve purity, we reject combinat for Belle [31] and a boosted dec Search for lepton-flavor-violating $\tau^- \rightarrow \ell^- \phi$ decays in 2019-2021

Belle II data

Background events are suppressed by a set of requirements on topological and kinematic variables

followed by a sele kinematic variable

Measurement of the branching fraction and CP asy candidate. To suppress non-signal photons, count for the angular dependence of ECL-re

Measurement of CP violation in $B^0 \to K^0_s \pi^0$ decay with σ being the resolution. We suppress contamination tion from prompt K_s^0 candidates and Λ decays using tw boosted-decision-tree (BDT) classifiers [27]. These BDT rely mostly on kin Measurement of CP asyr its decay products r ne domin

tinuum $e^+e^$ or s quark. trained on sin

.edu) 8

- Example: Improvement of Particle Identification at Belle II
- Currently likelihood of particle hypothesis is combined out of 36 subdetector likelihoods
 - $\mathscr{L}(h) = \prod_{D} \mathscr{L}_{D}(h)$
- NN solution can learn correlations among $\mathscr{L}_{D}(h)$
- Predict probabilities for all 6 particle species hypothesis (e, μ, π, K, p, d)
- Combination of high-level information as input:
 - ∘ **ℒ**_D(h)
 - Track momentum
 - Track charge
 - ECL Variables

- Example: Improvement of Particle Identification at Belle II
- Currently likelihood of particle hypothesis is combined out of 36 subdetector likelihoods
 - $\circ \qquad \mathcal{L}(\mathsf{h}) = \prod_{\mathsf{D}} \mathcal{L}_{\mathsf{D}}(\mathsf{h})$
- NN solution can learn correlations among $\mathscr{L}_{D}(h)$
- Predict probabilities for all 6 particle species hypothesis (e, μ, π, K, p, d)
- Combination of high-level information as input:
 - ∘ **ℒ**_D(h)
 - Track momentum
 - Track charge
 - ECL Variables
- Improved performances for all particle hypotheses

- Example: Improvement of Particle Identification at Belle II
- Currently likelihood of particle hypothesis is combined out of 36 subdetector likelihoods
 - $\mathscr{L}(h) = \prod_{D} \mathscr{L}_{D}(h)$
- NN solution can learn correlations among $\mathscr{L}_{D}(h)$
- Predict probabilities for all 6 particle species hypothesis (e, μ, π, K, p, d)
- Combination of high-level information as input:
 - ∘ **ℒ**_D(h)
 - Track momentum
 - Track charge
 - ECL Variables
- Improved performances for all particle hypotheses

Stefan Wallner, Xavier Simo: Particle identification at Belle II using Neural Networks

Convolutional Neural Networks

MNIST Results

Architecture	Test Error	Weights (10 ⁶)		
DNN ¹	0.35 %	12.11		
CNN ²	0.25 %	5.4		

- Deep neural networks scale badly with high amount of inputs
 - Images with 32 pixels already have 1024 inputs
- DNNs don't take locality (nearby pixels are more strongly correlated) and translation invariance (meaningful patterns can occur anywhere) into account

Convolutional Neural Networks

Convolutional Layer

Pooling Layer

- CNNs are very good for image recognition:
 - Input stays in 2D shape instead of being flattened
 - Weights are shared in convolutions -> translational invariance
 - Nearby pixels are more highly correlated due to convolutions in kernels
- Convolutional layer:
 - Apply filter of size NxN to input
 - Slide filter over entire input layer with fixed stride
- Pooling layer:
 - Reduce layer size by downsampling
 - Different pooling types, such as max or mean pooling

Lea Reuter (<u>lea.reuter@kit.edu</u>), Isabel Haide (<u>isabel.haide@kit.edu</u>)

Pion/Muon Identification with CNNs

- Identification of low-momenta muons relies on ECL
 - Better muon-pion separation useful for e.g. leptonic tau decays
- Default PID in ECL uses E/p
 - Not very powerful for low momentum pion-muon separation
- Energy deposition patterns for pions are more dispersed than muons
 - Neural network can employ pattern recognition
- Energy deposition in 7x7 crystals can be treated as images
 - Two separate CNNs for positive and negative tracks
 - CNNs outperform both default and BDT method

Abtin Narami, Torben Ferber: Identification of pions and muons with the Belle II calorimeter using convolutional neural network Lea Reuter (lea.reuter@kit.edu), Isabel Haide (isabel.haide@kit.edu)

Pion/Muon Identification with CNNs

- Identification of low-momenta muons relies on ECL
 - Better muon-pion separation useful for e.g. leptonic tau decays
- Default PID in ECL uses E/p
 - Not very powerful for low momentum pion-muon separation
- Energy deposition patterns for pions are more dispersed than muons
 - Neural network can employ pattern recognition
- Energy deposition in 7x7 crystals can be treated as images
 - Two separate CNNs for positive and negative tracks
 - CNNs outperform both default and BDT method

Abtin Narami, Torben Ferber: Identification of pions and muons with the Belle II

Generative Adversarial Networks

- Big chunk of Belle II computing is MC production
- With higher needs for MC data, computing time and resources might become bottleneck
 - Improvement of MC generation necessary
- TOP and ECL have highest simulation time of all subdetectors
- Improvement of MC simulation through generative ML algorithms
 - Generative adversarial networks
 - Variational autoencoders

Generative Adversarial Networks

Generative Adversarial Networks

Idea: Generate data out of random noise

https://embracethered.com/blog/posts/2020/machine-learning-attack-series-generative-adversarial-networks-gan/

Lea Reuter (<u>lea.reuter@kit.edu</u>), Isabel Haide (<u>isabe<mark>l.haide@kit.edu</mark>)</u>

Simulation of Noise Waveforms in the ECL

- ECL consists of ~9000 crystals
- Crystal PMT measurements are digitized and a photon and hadron fit is applied
- Background waveform simulations require much data and bandwidth to store

Alexandre Beaubien, John Michael Roney: Noise Waveform Generation Using GANs

Lea Reuter (<u>lea.reuter@kit.edu</u>), Isabel Haide (<u>isabe<mark>l.haide@kit.edu</mark>)</u>

Simulation of Noise Waveforms in the ECL

- Strategy: Only keep interesting (high energy, correlated backgrounds) waveforms and simulate the rest
- Train CNN GAN on generating waveforms
- Evaluate network on performance metrics
- GAN shows better performance than Autoencoders or Covariance Matrix Methods

Alexandre Beaubien, John Michael Roney: Noise Waveform Generation Using GANs

Lea Reuter (<u>lea.reuter@kit.edu</u>), Isabel Haide (<u>isabel.haide@kit.edu</u>)

Transformer

Developed for translations:

- Positional Encodings (position in sentence is important for the translation!)
- Attention (context is important)
- Self-Attention

(synonymous words can have different meanings according to context)

The FBI is chasing a criminal on the run.									
The FBI is chasing a criminal on the run.									
The	FBI	is chasing a criminal on the run.							
The	FBI	is	chasing a	cri	minal on th	ne rur	ı.		
The	FBI	is	chasing	a c	riminal on	the r	un.		
The	FBI	is	chasing	a	criminal o	n the	run .		
The	FBI	is	chasing	a	criminal	on th	ne rur	ı.	
The	FBI	is	chasing	a	criminal	on	the r	un.	
The	FBI	is	chasing	a	criminal	on	the	run.	
The	FBI	is	chasing	a	criminal	on	the	run	

Deep Continuum Suppression

- BDTs and MLPs require fixed order for input particles, so some kind of sorting needed but this is prone to errors
 - Use self-attention-based input for permutation invariance
- Predictive uncertainties for the continuum classifications
 - Use deep ensembles
- Continuum suppression dependent on certain analysis variables, which is Introducing a bias for further studies

0.8

uncertainty (95% CL) .0 .0 .0 .0

0.2

0.0 0.0

Decorrelation from analysis variables

Autoencoder

- Unsupervised learning to replicate input as output
- Subnetwork **encoder** maps input to embedded representation
- Subnetwork **decoder** maps back to input space
- Lower-dimensional, condensed representation to capture important patterns
- \rightarrow Network trained to learn the identity function

No labels required

Autoencoder: Anomaly Detection

Goal: Find rare signature of new physics (e.g. dark Higgs searches) through anomaly detection in background dominated regions

0052

ts / 0.4

Belle II Simulation $\int c dt = 100 \text{ fb}^-$

anomalyscore

Encoder: graFEI

- Current FEI is restricted by branching • fraction coverage (explicit decay structures covering $O(10\,000)$ decays so ~15%)
- Use encoder for latent space representation to predict the decay tree
- Permutation invariance

Graph Data Structure

What happens if you have varying input size, for example the different number of particles in Event that are not on grids?

Use Graph Representation:

- Non-euclidian data structure
- Capture both information to the nodes and the relational information (edges)

Cannot use CNNs here

H3C

Protein Interaction

Lea Reuter (lea.reuter@kit.edu), Isabel Haide (isabel.haide@kit.edu
Graphs

Graphs are build with:

Nodes n_i

- In our example particles With node features
 - Energy, momentum, charge, PID

Edges e _{ii}

• Relations between particles

With edge features

• Angle between two particles, distance, ...

Graph Convolutional Networks

Red node after first update step

 Generalization of Convolutional neural networks to graph-structured data

- Exchange information between nodes
- One-dimensional edge features as edge-weights possible

Current Flavor Tagger

- Identify B-flavor from a single particle in the rest of event *tag-side) in 13 categories
- Combine the categories output to provide final output
- While each particle has 13 outputs, only the best scores for each category are used
- Information loss
 - Don't know the category score of other particles
 - Don't know which particle has the best score

Euget #	Category's output, qp								
Event#	Electron	Muon	Kaon	SlowPion	Int-electron	Int-muon			
Particle0	0.99	0.00	0.01	0.00	-0.99	0.00			
Particle1	0.00	0.00	0.12	-0.96	-0.04	-0.51			
Particle2	-0.01	-0.15	-0.10	0.00	0.00	0.03			
Particle3	-0.34	0.00	-0.09	0.00	0.80	0.03			
Particle4	0.00	0.00	-0.94	0.00	0.00	0.02			
Best	0.99	-0.15	-0.94	-0.96	-0.99	-0.51			
о -			\sim		\leq				
			FastBl	DT / MLF	>	$\rightarrow qr$			

GNN-based Flavor Tagger, GFlaT

- Use Dynamic Graph Convolutional Network
- Update node features using edge information
 - Momentum, relative distance between two particles, 13-category outputs, 6-PID variables as input
- Measured tag-side efficiency with real data: 20 % increase of efficiency on data

Yo Sato, Thibaud Humair, Petros Stavroulakis: Graph-Neural-Network based Flavor Tagger Lea Reuter (<u>lea.reuter@kit.edu</u>), Isabel Haide (<u>isabe<mark>l.haide@kit.edu</u>), Isabel Haide (isabel.haide@kit.edu</u>)</u></mark>

Real Time Application

- Different trigger levels have to reduce data stream to match DAQ limitations
- Level 1 trigger: hardware-based on FPGAs
- High Level Trigger: full reconstruction CPU based
- If data is not triggered here, its not saved \rightarrow not available

 Bigger is not always better: real time machine learning applications require smart, small networks to be deployed on FPGAs with high throughput rates (e.g. 30 MHz)

Lea Reuter (<u>lea.reuter@kit.edu</u>), Isabel Haide (<u>isabel.haide@kit.edu</u>)

Christian Kiesling, Felix Meggendorfer, Elia Schmidt, Marc Neu, Kai Unger, Alois Knoll, Simon Hiesl, Timo Forsthofer et al Lea Reuter (lea.reuter@kit.edu), Isabel Haide (isabel.haide@kit.edu

42

-

Do you have questions?

Lea Reuter (<u>lea.reuter@kit.edu</u>), Isabel Haide (<u>isabel.haide@kit.edu</u>)

03 Object Condensation for Reconstruction

Motivation

- Searches for new physics for data we did not look at yet
- New tools with Machine Learning to improve trigger level reconstruction
- Improvement of current trigger algorithms

Requirements:

- Varying input sizes due to different number and type of particles in event
 - Use Graph Neural Networks
- We don't know how many clusters/tracks there will be
 - Object Condensation Algorithm¹

Graph Reconstruction Model

46

Real Space

- OC algorithm takes input vertices (= detector hits) and translates them from real space to a clustering space
- Clustering space is learned by the network
 - In the beginning clustering space = real space

Clustering Space

- OC algorithm takes input vertices (= detector hits) and translates them from real space to a clustering space
- Clustering space is learned by the network
 - In the beginning clustering space = real space
- Dimensionality of clustering space is hyperparameter
- OC algorithm introduces potential that clusters vertices from the same object together

Attractive Potential

- An attractive potential draws vertices from the same object towards each other
- Background vertices are not influenced by the potential
- Attraction loss favors minimum distance between vertices of the same object

Repulsive Potential

Clustering Coordinate 2

- An attractive potential draws vertices from the same object towards each other
- Background vertices are not influenced by the potential
- Attraction loss favors minimum distance between vertices of the same object
- A repulsive potential draws vertices from different objects away from each other
- Repulsion loss favors maximum distance between vertices of different objects
 - Clustering space is bounded

β Values

Clustering Coordinate 2

- Each vertex is assigned a β value
- Vertex with the highest β value is called a condensation point
 - Invokes the potential for vertices belonging to the same object
 - β loss favors one condensation point per object
- Condensation points "carry" values for their objects
 - ECL: energy, position, ... of clusters
 - CDC: momentum, charge, displacement, ... of tracks

Time (hours)

80

attraction loss

40

60

0.025

0.02

0.01

0.005

20

Lea Reuter (<u>lea.reuter@kit.edu</u>), Isabel Haide (<u>isabel.haide@kit.edu</u>

<u>.edu</u>)

52

- Full loss is sum of all sub-losses
- Scaling of losses can be done to improve training

53

- OC for ECL for both offline and online reconstruction
- For each cluster, predict existence, position and deposited energy
- Offline: Use every crystal with E
 > 1 MeV as input

- OC for ECL for both offline and online reconstruction
- For each cluster, predict existence, position and deposited energy
- Offline: Use every crystal with E
 > 1 MeV as input
- Online: Use current trigger mapping (4x4 crystals = triggercell) with energy cut as input

- OC for ECL for both offline and online reconstruction
- For each cluster, predict existence, position and deposited energy
- Offline: Use every crystal with E
 > 1 MeV as input
- Online: Use current trigger mapping (4x4 crystals = triggercell) with energy cut as input

Background Photon 1 rad Photon 3 Forward Endcap **Backward Endcap** 1.0 1.0 0.5 0.5 in m 0.0 0.0 5 ~ > -0.5-0.5-1.0-1.0-1.0-0.50.0 0.5 10 10 0.5 0.0 -0.5 -10 x in m x in m Train Position x 1.0 1.4 18 2.0 2.2 θ in rad

- OC for ECL for both offline and online reconstruction
- For each cluster, predict existence, position and deposited energy
- Offline: Use every crystal with E
 > 1 MeV as input
- Online: Use current trigger mapping (4x4 crystals = triggercell) with energy cut as input
- Improve efficiency and resolution of ECL Trigger algorithm
 - Current ECL Trigger has low efficiency for overlapping clusters

1.0

0.5

0.0

-0.5

-1.0

-1.0 -0.5 0.0 0.5 1.0

Train Position x TRGECLCluster

x in m

in m

~

- OC for ECL for both offline and online reconstruction
- For each cluster, predict existence, position and deposited energy
- Offline: Use every crystal with E
 > 1 MeV as input
- Online: Use current trigger mapping (4x4 crystals = triggercell) with energy cut as input
- Improve efficiency and resolution of ECL Trigger algorithm
 - Current ECL Trigger has low efficiency for overlapping clusters

 Background
 Prediction 0

 Photon 1
 Prediction 1

 Photon 3
 2

 Forward Endcap
 2

 1
 1

 $\phi = 0$ $\phi = 0$
 $\phi = 0$ $\phi = 0$

1.0

1.4

 θ in rad

Event Display (Full, Early Phase 3) - Example

2.0 2.2

10 05

1.0

0.5

0.0 ⊑

-10

-0.5 -1.0

0.0

x in m

- OC algorithm trained on 1-6 photons with generated energy between 0.1 GeV and 2 GeV
- Energy of triggercells > 100 MeV (modelling of current trigger algorithm)
- Improvement in efficiency for full ECL
- Current modelhas ~40000 parameters

- Displaced vertices important signature in searches for new physics
- Improve both real time and offline reconstruction

- Use CDC hits in the detector as input for the OC GNN
- Predict number of tracks
 - For each track, predict starting position, momentum and charge

Lea Reuter (lea.reuter@kit.edu), Isabel Haide (isabel.haide@kit.edu)

52

Object Condensation for CDC

Epoch 0

GNN achieves 96.68% efficiency on displaced vertex samples $~X \rightarrow \mu^- \mu^+$

Graph Reconstruction Model

Adjustable Parameters:

General Parameters:

- dimension dim1, dim2 of Linear Layer
- number of Graph Blocks nblocks

GravNet Parameters:

- number of k-nearest neighbors in GravNet
- GravNet space dimensions (currently 4)

Output:

- Dimension of Cluster Coordinates for OC coord
- Number of output layers according to Track Parameter Predictions

Hyperparameter

Model Parameters need to be greatly reduced to fit FPGA and gbasf2 CPU requirements

This starting setup has ~669000 trainable parameters!

Hyperparameter	Current Value	
Number of Neighbors k	9	
Number of GravNet Blocks nblocks	3	
Number of Nodes 1 dim1	128	
Number of Nodes 2 dim2	32	
Momentum	0.6	
CC Space ccoords	3	
Learning Rate Ir	0.001	
Optimizer optim	Adam	

Training Documentation wandb.ai

- Machine Learning Platform for developers
- Cloud based ML experiment tracking tool
- Features:
 - Experiment Tracking
 - Hyperparameter Tuning
 - Data and Model Versioning
 - Model Management
 - Data Visualization
 - Collaborative Reports
 - Integration for PyTorch, Keras, PyTorch Lightning etc.
 - Private-Hosting

erview Reports Proj	ects Likes			
Projects			Crea	ate new project
Q Search			1-12 - of	12 < >
Name	Last Run	Runs	Entity	
validation_triggercells	2023-07-23	133	ihaide	000
validation_ep3	2023-06-13	3	ihaide	000
triggercells	2023-07-17	132	ihaide	000

wandb	.log({'full loss': loss,
	'repulsion loss': reploss,
	'attraction loss': attloss,
	'energy loss': energyloss,
	'beta loss': betaloss,
	'suppress noise loss': suppressloss,
	'pos loss': posloss})

Lea Reuter (lea.reuter@kit.edu), Isabel Haide (isabel.haide@kit.edu)

Training Documentation wandb.ai

Very simple to use! Everything at one place!

- Save configs and models to keep track of multiple trainings and version control
- Monitor training
- Log weights and biases for deep learning trainings (confirm that not only last layers get updated while training!)

Have to monitor more than 7 sub-losses for Object Condensation!

Hyperparameter Optimization

- Runs easily on one or more gpus (start a new sweep on another gpu with the same sweep agent)
- Optimizes model parameters

ECL OC model down to 40,000 parameters

Quality Control

- Machine learning very dependent on training samples
 - Know what is included in the simulated samples and make comparisons with data
 - Be careful about training sample composition (if training samples are 99% background its very efficient to just predict background)
 - Enrich dataset with rare cases
 - Introduce class weights
 - Check how your model will perform on other cases (empty events, background events..)
 - Check for biases in physics distributions for predictions
 - Use meaningful metrics for evaluation
 - Often loss/accuracy is not showing the whole picture

How can I Participate?

Lea Reuter (<u>lea.reuter@kit.edu</u>), Isabel Haide (<u>isabel.haide@kit.edu</u>)

Find the right problem

- Lots of challenges in HEP can be tackled with ML algorithms
- Signs for possible improvement through ML:
 - High number of input variables
 - High correlations between variables
 - Unknown or difficult physical model

But:

- Not everything can be improved with ML
- Analytical functions, if known, will often perform better and with less computing resources

Join our MVA/ML Meeting!

Indico: <u>https://indico.belle2.org/category/167/</u> Meetings every 2 weeks, American friendly time every 4 weeks!

We want YOU!

Backup

Lea Reuter (<u>lea.reuter@kit.edu</u>), Isabel Haide (<u>isabel.haide@kit.edu</u>)

Slow Pion Rescue

- Around 26% of slow pions are not reconstructed by SVD, need to reconstruct slow pions from the PXD
- PXD data rate may have to be reduced after shutdown
 - PXD cluster not associated to a track are dropped by region-of-interest algorithm
 - Loose PXD cluster
- PXD hits are dominated by QED (2000 electrons per 1 slow pion)
- **Goal**: Discriminate QED background from slow-pion using a neural network
 - 1 hidden layer with 100 nodes
 - PX cluster properties as input: size, shape position, ...
- Tested various network models, achieved 89% efficiency for 90% electron rejection on simulated samples

Message Passing: Update Edges

Message Passing: Update Nodes

Red node updated with information of neighbouring nodes and edges

Classic Neural Networks

Boosted

Activation Function:

- Nonlinear function, such as tanh(x) or max(0, x)
- Necessary to compute nontrivial problems

Output:

- Classification or regression
- Best scaled to [0, 1]
- Input to loss function, evaluation of the network's performance