

Precision Measurement on $R(D^{(*)})$ with Inclusive Tagging Methods at Belle II

Tia Crane University of Hawaii at Manoa

Belle II Summer School 2023 – Duke University July 28, 2023

Results and Predictions

- The standard model predicts all leptons have the same coupling $(g_{\ell=e,\mu,\tau})$ to electroweak bosons (W^{\pm}, Z^0)
- HFLAV average tension of 3.3σ
- OUR GOAL: Increase precision of $R(D^{(*)})$ measurement with *inclusive tagging* to further test lepton flavor universality...

$$R(D^{(*)}) = \frac{N(D^{(*)}\tau\nu)}{N(D^{(*)}\ell\nu)} \frac{\varepsilon(D^{(*)}\ell\nu)}{\varepsilon(D^{(*)}\tau\nu)} \frac{1}{B(\tau)}$$
Removes most systematic uncertainties

$$\Gamma(B^- \to D^0 \ell^- \bar{\nu}_\ell) \propto \frac{g_\ell^2}{M_W^2} \frac{g^2}{M_W^2} m_B^5$$
$$R(D) = \frac{\Gamma(B^- \to D^0 \tau^- \bar{\nu}_\tau)}{\Gamma(B^- \to D^0 \ell^- \bar{\nu}_\ell)} \propto \frac{g_\tau^2}{g_\ell^2}$$

Belle II Results

First lepton flavor universality (LFU) results from Belle II!

Shifts difference (exceeding) standard model (SM) predictions from 3.2σ to 3.3σ

 $R(D^*) = 0.267 + 0.041 - 0.039$ (stat.) + 0.028 (syst.)

Standard Model (SM) predictions: $R(D) = 0.298 \pm 0.004$ $R(D^*) = 0.254 \pm 0.005$

Inclusive Tagging Method

- With good ROE, exploit Belle II high resolution tracking, impact parameter, and small beam spot
- Exact topology of tag side is not important, but simple masks placed to ensure "good" B_{tag}
 - Apply lepton veto to ROE to ensure there is no missing energy on the tag side → increase signal fit resolution

Signal

 D^0

- ADVANTAGE: Maximize sensitivity by increasing signal efficiency
- DISADVANTAGE: Yields lower purity compared to FEI tagging

FEI Thomas Keck Inclusive Tag $\varepsilon = \mathcal{O}(100)\%$ (2) Consistency of B_{tag} Semileptonic Tag $\varepsilon = \mathcal{O}(1)\%$ (1) Knowledge of B_{tag} Hadronic Tag $\varepsilon = \mathcal{O}(0.1)\%$ (2) Exact knowledge of B_{tag}

ω

Efficiency

γ

ROE

 K^{\pm}

 B^+

 B^{-}

 $\bar{\nu}_{\tau}$

 ν_{τ}

4

Inclusive Tagging Method

- With good ROE, exploit Belle II high resolution tracking, impact parameter, and small beam spot
- Exact topology of tag side is not important, but simple masks placed to ensure "good" B_{tag}
 - Apply lepton veto to ROE to ensure there is no missing energy on the tag side → increase signal fit resolution

Signal

 D^0

- ADVANTAGE: Maximize sensitivity by increasing signal efficiency
- DISADVANTAGE: Yields lower purity compared to FEI tagging

Signal Simulta reconst normal	Reconstruct aneously ruct signatization mo	uction l and odes.
Variable	$B \rightarrow De\nu$	$B \to D\tau\nu$
binary K-ID	>	0.1
binary π -ID	>	0.1
e^{\pm} -p [GeV/c]	>	0.2
MVA e-ID	>	0.9
0^0 InvM [GeV/c ²]	$1.85 < \mathrm{In}$	vM < 1.88
	(07.1 + 0.1)07	$(99.9 \pm 0.1)\%$

			DODICI		
		Track	$\frac{\text{ROE Mask}}{\text{thotaInCDCAcceptance, pValue > 0.001}}$		
Signa Simul recons	I Reconstruction taneously struct signal and	Track Energy Cluster	thetaInCDCAcceptance, pValue > 0.001, $\left[pt < 0.15 \text{ and } \left(\frac{dr^2}{3} + \frac{dz^2}{6}\right) < 1\right]$ or $\left[0.15 < pt < 0.25 \text{ and } \left(\frac{dr^2}{2} + \frac{dz^2}{3}\right) < 1\right]$ or $\left[0.25 < pt < 0.5 \text{ and } \left(\frac{dr^2}{2} + \frac{dz^2}{3}\right) < 1\right]$ or $\left[0.5 < pt < 1.0 \text{ and } \left(\frac{dr^2}{2} + \frac{dz^2}{3}\right) < 1\right]$ or $\left[1.0 < pt \text{ and } \left(dr^2 + dz^2\right) < 1\right]$ beamBackgroundSuppression > 0.15, fakePhotonSuppression > 0.15,		
norma	lization modes.		(FWD Endcap, clusterE > 0.075), or (BRL, clusterE > 0.05), or (BWD Endcap, clusterE > 0.1)		
Variable	$B \to De\nu \qquad B \to D$	$\tau \nu$			
binary K-ID	> 0.1	-			
binary π -ID	> 0.1	J	Rest Of Event		
e^{\pm} -p [GeV/c]	> 0.2		Select only good B_{tag}		
MVA e-ID	> 0.9	(candidates via minimizing		
$\rm D^0~InvM~[GeV/c^2]$	$1.85 < \mathrm{InvM} < 1.88$	Ì	Mbc_{ROE} and ΔE_{ROE} widths		
ε	$(27.1 \pm 0.1)\%$ $(22.2 \pm 0.1)\%$	0.1)%	-		
]	Lepton Veto		
]	Ensure no missing mass for		

better resolution of signal fit

7

Signal Efficiency $B^{\pm} \rightarrow (D^0 \rightarrow K\pi) \ell^{\pm} \nu$

With hadronic and semileptonic tagging, the efficiency is $O(\leq 0.5\%)$

${f B} o {f D}^0 \ {f e} \ u$			${f B} ightarrow {f D}^0 \; au(ightarrow {f e} u u) \; u$	
	Kpi	Ī		Kpi
Reconstruction	0.271 ± 0.001		Reconstruction	0.222 ± 0.001
Rest of Event			Rest of Event	
$\ell \text{ Veto}2$	0.253 ± 0.001		$\ell \text{ Veto}2$	0.207 ± 0.001
5.2 <mbc< td=""><td>0.191 ± 0.001</td><td></td><td>5.2<mbc< td=""><td>0.158 ± 0.001</td></mbc<></td></mbc<>	0.191 ± 0.001		5.2 <mbc< td=""><td>0.158 ± 0.001</td></mbc<>	0.158 ± 0.001
-4 <deltae<2< td=""><td>0.190 ± 0.001</td><td></td><td>-4<deltae<2< td=""><td>0.157 ± 0.001</td></deltae<2<></td></deltae<2<>	0.190 ± 0.001		-4 <deltae<2< td=""><td>0.157 ± 0.001</td></deltae<2<>	0.157 ± 0.001
Background Suppression			Background Suppression	
SignalProb>0.7	0.077 ± 0.002		SignalProb>0.7	0.126 ± 0.002
Best Candidate Selection			Best Candidate Selection	
B vertex chiProb	0.077 ± 0.002		B vertex chiProb	0.126 ± 0.002
		With <i>inclusive tag</i> efficiency of C	<i>rging</i> we get 0(10%)	

MC Truth

Kernel Density Estimation

- Non-parametric method of constructing a continuous PDF based on dataset
- Each data point is assigned a multi-dimensional kernel (Gaussian)

Kernel Density Estimation

- Non-parametric method of constructing a continuous PDF based on dataset
- Each data point is assigned a multi-dimensional kernel (Gaussian)
- User defines bandwidth (# datapoints associated with kernel) which controls the tradeoff between smoothness and fine-scale fluctuations

ADVANTAGE: Avoid bias of binning associated with a histogram (binned) PDF \rightarrow increase sensitivity

DISADVANTAGE: Unbinned fit requires extended processing time

 $B \rightarrow (D^0 \rightarrow K\pi)\tau\nu$ Template Bandwidth = 2 Any smaller leads to *overfitting* (PDF fits each data point and microscopic fluctuations present) Any larger leads to *underfitting* (greatly worsen χ^2/ndf and unable to extract macroscopic properties, ie amplitude)

Statistics			
Signal Component	Events Used for Template Construction		
$B \to D^0 \tau \nu$	93438		
$B \rightarrow D^0 e \nu$	64741		
$B \to D^* \tau \nu$	1468		
$B \rightarrow D^* e \nu$	30278		

Concluding Remarks

- A test of lepton flavor universality via a precision measurement on $R(D^{(*)}) \rightarrow \underline{deviation from the SM}$ prediction could be signs of new physics!
- *Inclusive tagging* permits high efficiency \rightarrow increased sensitivity
- Simultaneous reconstruction of signal and normalization modes
- Most errors cancel out in $R(D^{(*)})$ as we are taking the ratio
- KDE is employed to construct signal templates

 ν_{τ}

Backup Slides

MetaData

D ⁰ Signal Metadata			
Release	release-06-00-08		
Generated Signal Events	20M Events		
$K\pi + K2\pi$ File	13.5e6		
$\rightarrow K\pi \ (0.0395)$	2905995		
$\rightarrow K2\pi \ (0.144)$	10594005		
$K3\pi$ File	6.5e6		

\mathbf{D}^{*0} Signal Metadata			
Release	release-06-00-08		
Generated Signal Events	5M Events		
$K\pi + K2\pi$ File	3.4e6		
$\rightarrow K\pi$ (0.0395)	731880		
$\rightarrow K2\pi \ (0.144)$	2668120		
$K3\pi$ File	1.6e6		

Reconstruction Release: light-2303-iriomote MC15ri_b Samples

D ^{*+} Signal Metadata			
Release	release-06-00-08		
Generated Signal Events	<u>5M Events</u>		
$K\pi + K2\pi$ File	3.4e6		
$\rightarrow K\pi \ (0.0395)$	731880		
$\rightarrow K2\pi$ (0.144)	2668120		
$K3\pi$ File	1.6e6		

Signal Selection

Composite State Selection: electron					
Крі	K2pi	КЗрі			
1.85386 < InvM < 1.87562	1.83637 < InvM < 1.88824	1.85342 < InvM < 1.8756			
D0 vertex fit (conf_level=0.001)	D0 vertex fit (conf_level=0.001, pi0 mass constraint)	D0 vertex fit (conf_level=0.001)			
B vertex fit (conf_level=0.001)	B vertex fit (conf_level=0.001)	B vertex fit (conf_level=0.001)			

Signal Definition

The signal is defined through...

- 1. The intermediate resonance structure for the respective decay branch (TopoAna)
 - nSigIncCascDcyBr_(decay branch) and B_mcPDG=-521
 - $\bullet\,$ nCcSigIncCascDcyBr_(decay branch) and B_mcPDG=521
- 2. $(B_mcPDG^*D_mcPDG) = -521^*421$ or $(B_mcPDG^*D_mcPDG) = -511^*421$
 - The multiplication of the mcPDGs ensures the mode is properly reconstructed (i.e. proper D associated with the proper B)
- 3. (D_mcPDG*l_mcPDG)=lrec*421
 - $lrec \in \{11, 13\}$
- 4. B_mcErrors $< \{16, 32, 64, 152\}.$
 - D^0 :
 - electron/muon: B_mcErrors < 16
 - tauon: B₋mcErrors < 32
 - D^{*0} and D^{**0} : B_mcErrors < 64
 - D^{*+} and D^{**+} : B_mcErrors < 521
- 5. (l_mcPDG*l_genMotherPDG)=lrec*lmother
 - $lrec \in \{11, 13\}$
 - $\operatorname{Imother} \in \{521, 511, 15\}$

Signal Efficiency $B \rightarrow (D^{*0} \rightarrow K\pi) \ell \nu$

${f B} ightarrow {f D}^{*0} {f e} u$		
	Kpi	
Reconstruction	0.227 ± 0.002	
Rest of Event		
$\ell \text{ Veto}2$	0.212 ± 0.002	
5.2 <mbc< th=""><th>0.158 ± 0.003</th></mbc<>	0.158 ± 0.003	
-4 <deltae<2< th=""><th>0.157 ± 0.003</th></deltae<2<>	0.157 ± 0.003	
Background Suppression		
MVA Output>0.7	0.067 ± 0.004	
Best Candidate Selection		
B vertex chiProb	0.067 ± 0.004	

$\mathbf{B} \rightarrow \mathbf{D}^{*\circ} \ \tau (\rightarrow \mathbf{e} \nu \nu) \ \nu$			
	Kpi		
Reconstruction	0.182 ± 0.002		
Rest of Event			
$\ell { m Veto2}$	0.170 ± 0.002		
5.2 < Mbc	0.129 ± 0.003		
-4 < delta E < 2	0.128 ± 0.003		
Background Suppression			
MVA Output>0.7	0.088 ± 0.004		
Best Candidate Selection			
B vertex chiProb	0.088 ± 0.004		

D

n * 0

Signal Efficiency $B \rightarrow (D^{*+} \rightarrow K\pi) \ell \nu$

${f B} ightarrow {f D}^{*+} {f e} u$			
	Kpi		
Reconstruction	0.273 ± 0.002		
Rest of Event			
$\ell \text{ Veto}2$	0.254 ± 0.002		
5.2 <mbc< td=""><td>0.188 ± 0.003</td></mbc<>	0.188 ± 0.003		
-4 <deltae<2< td=""><td>0.150 ± 0.003</td></deltae<2<>	0.150 ± 0.003		
Background Suppression			
MVA Output>0.7	0.077 ± 0.004		
Best Candidate Selection			
B vertex chiProb	0.077 ± 0.004		

$\mathbf{B} ightarrow \mathbf{D}^{*+} \ au(ightarrow \mathbf{e} \ u u) \ u$			
	Kpi		
Reconstruction	0.216 ± 0.002		
Rest of Event			
$\ell \text{ Veto}2$	0.201 ± 0.002		
5.2 <mbc< td=""><td>0.151 ± 0.003</td></mbc<>	0.151 ± 0.003		
-4 < delta E < 2	0.187 ± 0.003		
Background Suppression			
MVA Output>0.7	0.102 ± 0.004		
Best Candidate Selection			
B vertex chiProb	0.102 ± 0.004		

MVA and BCS Statistics

	Efficiency (SigProb>0.7)	Figure of Merit: $\frac{S}{\sqrt{S+B}}$	Candidates Before	Candidates After				
Relative Sample Signal	0.7343	3.2958						
Fake D	0.1158	56.2299						
Fake B	0.3347	57.3869						
qqbar	0.0772	1.9459						
TOTAL			965644	414869				
MVA Background Suppression								
	Mean # Candidates Before	# Candidates Before	Mean # Candidates After	# Candidates After				
TOTAL	1.005	414869	1.003	414256				
Best Candidate Selection								

MVA Output

MVA Output

MVA Output

Dominant Generated Signals

		Number B- case	er of es	Number of B+ cases	Total cases (B- and B+)	Cumulative cases
rowNo	cascade decay branch of B^-	iCascDcyBrP	nCase	nCcCase	nAllCase	nCCase
1	$B^- \to e^- \bar{\nu}_e D^{*0}, D^{*0} \to \pi^0 D^0, D^0 \to \pi^+ K^-$	4	12151	12431	24582	24582
2	$B^- \rightarrow e^- \bar{\nu}_e D^0, D^0 \rightarrow \pi^+ K^-$	0	7663	7765	15428	40010
3	$B^- \rightarrow e^- \bar{\nu}_e D^{*0}, D^{*0} \rightarrow D^0 \gamma, D^0 \rightarrow \pi^+ K^-$	28	6681	6701	13382	53392
4	$B^- \to \tau^- \bar{\nu}_\tau D^0, \tau^- \to e^- \bar{\nu}_e \nu_\tau, D^0 \to \pi^+ K^-$	32	612	603	1215	54607
5	$B^- \to \tau^- \bar{\nu}_\tau D^{*0}, \tau^- \to e^- \bar{\nu}_e \nu_\tau, D^{*0} \to \pi^0 D^0, D^0 \to \pi^+ K^-$	16	503	544	1047	55654
6	$B^- \to e^- \bar{\nu}_e D^0_1, D^0_1 \to \pi^- D^{*+}, D^{*+} \to \pi^+ D^0, D^0 \to \pi^+ K^-$	44	324	304	628	56282
7	$B^- \to \tau^- \bar{\nu}_\tau D^{*0}, \tau^- \to e^- \bar{\nu}_e \nu_\tau, D^{*0} \to D^0 \gamma, D^0 \to \pi^+ K^-$	7	308	316	624	56906
8	$B^- \to e^- \bar{\nu}_e D_1^{\prime 0}, D_1^{\prime 0} \to \pi^- D^{*+}, D^{*+} \to \pi^+ D^0, D^0 \to \pi^+ K^-$	38	269	237	506	57412
9	$B^- \to e^- \bar{\nu}_e D^0_1, D^0_1 \to \pi^+ \pi^- D^0, D^0 \to \pi^+ K^-$	36	223	206	429	57841
10	$B^- \to e^- \bar{\nu}_e D_0^{*0}, D_0^{*0} \to \pi^0 D^0, D^0 \to \pi^+ K^-$	119	205	221	426	58267

$B \rightarrow (D^0 \rightarrow K\pi) e\nu$ Train-Test Template

USED IN PRESENTATION: 50% of signal samples for PDF construction, 50% for composite fit and validation

Tia Crane – UHM – 2023 Belle II Summer School

$\begin{array}{c} B \to (D^0 \to K\pi)\tau\nu \text{ Train-Test} \\ \text{Template} \end{array}$

$B \rightarrow (D^* \rightarrow K\pi) e\nu$ Train-Test Template

$\begin{array}{c} B \to (D^* \to K\pi)\tau\nu \text{ Train-Test} \\ \text{Template} \end{array}$

$B \rightarrow (D^0 \rightarrow K\pi)\tau\nu$ Template

Fake D Template

Fake B Template

$q\bar{q}$ Template

Previous $R(D^{(*)})$ Results

A test of lepton flavor universality...

 $R(D^*)$

0.4

HFLAV average

HFLAV

 $\Delta \chi^2 = 1.0$ contours

Previous $R(D^{(*)})$ Results

A test of lepton flavor universality...

 $R(D^*)$

0.4

HFLAV

2021

LHCb15

HFLAV

 $\Delta \chi^2 = 1.0$ contours

