TRG efficiency Measurement with $\mu\mu\gamma$

1

Korea Univ. Department of Physics Joon Nyong Chang linkinpeas@korea.ac.kr

Contents

- 1. Direction of Study
- 2. Muon Reconstruction Requirements
- 3. Efficiency Calculation
- 4. Variables
- 5. Cuts
- 6. Efficiency results
- 7. Summary

Direction of Study

- The $e^+e^- \rightarrow \mu^+\mu^-\gamma$ interaction was the focus of this study

- These events containins information from subdetectors
- Can be triggered by a variety of L1 Triggers.
- To check that this interaction is an appropriate sample for the CDC/ECL triggers.
- Attempts in reconstruction of previous efficiency calculation has been done
- Dataset:
 - Data: bucket16 to bucket36 (skim:all)
 - Experiment: 18,20,22
- Goal: Further analysis will be done regarding other experiments along with run-wise evaluation. Once this
 is done, the CDC-ECL matching will be worked on.

Muon reconstruction requirements

- The muons were reconstructed based off the following conditions through gbasf2
- Track requirements:

|dz| < 2.0, |dr| < 0.5, muonID > 0.5

• Photon requirements:

inCDCAcceptance, clusterErrorTiming < 10^{-6} ,[clusterE1E9 > 0.4 or E > 0.075] stdPhoton listtype: 'loose'

Efficiency Calculations

• The efficiency was based off the below equation, and the trigger bits which were used was based off the chart below.

$\epsilon_{target} = \frac{N_{target\&reference}}{N_{reference}}$								
	CDC	CDC	ECL	KLM				
Target(FTDL)	ffo	fy30	hie	mu_b2b				
Reference(PSNM)	hie	hie	mu_b2b	hie				

• The cuts regarding each of the reference bits were defined based off the study BELLE2-NOTE-TE-2020-014 and Xuyang Gao: Trigger efficiency study with $ee \rightarrow \mu\mu\gamma$

Variables

• The variables are organized below

Variable	Definition
$\Delta \phi$	The azimuthal angle difference between the two muon tracks
$\min p_T$	The smaller transverse momentum between the two muons
$cos heta_{\mu 1, \mu 2, \gamma}$	The cosine of the polar angle for the muons or photon tracks within the detector
$\phi_{\mu,\gamma}$	The azimuthal angle for the muons or photon tracks within the detector
Eγ	The energy of the photon emitted during the $e^+e^- \rightarrow \mu^+\mu^-\gamma$ interaction

Cuts

The Cuts corresponding to the target Triggers were defined below.

Target Trigger	Additional cut
ffo	$\Delta \phi > 90^\circ \& \min p_T > 0.4 \text{ GeV}$
fy30	$\Delta \phi > 30^\circ \& \min p_T > 0.4 \text{ GeV}$
hie	$E_{\gamma} > 1$ GeV, $\cos \theta_{\gamma}$ in Barrel Region
mu_b2b	$\min p_T > 1 \text{ GeV } \& \cos \theta_{\mu} \in [-0.4, 0.62]$

Each additional cut was constructed based on the definitions of each trigger bit.

ffo: opening angle >90°The min $p_T > 0.4$ GeV condition was applied to remove a largefy30: opening angle >30°amount of muons which has far too small transverse momentahie: $E_{\gamma} > 1$ GeV

mu_b2b: $p_T > 1$ GeV, and back to back conditions

Cuts(Invariant Mass)

 Also, for each experiment, I selected the Invariant mass to be in the range of the dimuon signal by adding the cut Inv_M > 4

Cuts

The Results of the cut applied for each experiment is shown below,

Target Trig	ger	Additional cut						
ffo		$\Delta \phi > 90^\circ$ & min $p_T > 0.4$ GeV			$\epsilon_{target} = \frac{N_{target\&reference}}{N_{reference}}$			
fy30		$\Delta \phi > 30^\circ \& \min p_T > 0.4 \text{ GeV}$						
hie		$E_{\gamma} > 1$ GeV, $\cos \theta_{\gamma}$ in Barrel Region						
mu_b2b)	$\min p_1$	$_T > 1 \text{ GeV } \& \cos \theta_{\mu} \in [-0.4, 0.62]$					
		Exp 18		Ехр 20			Exp 22	
Trigger	Befo	ore cut	After cut	Before cut	After cu	t	Before cut	After cut
ffo	37	1454	185402	102461	50898		892951	444352
fy30	36	8623	184275	101960	50720		891801	444392
hie	26	5551	148316	65829	36849		596635	338739
mu_b2b	26	5313	167038	65793	41376		596159	376130

ffo bit Efficiency

 $Cut:\Delta \phi > 90 \& \min p_T > 0.4 GeV$

fy30 bit Efficiency

hie bit Efficiency

mu_b2b bit Efficiency

Summary

- The efficiency calculations for experiments 18,20,22 were very much in line with the results from preceding studies of the same type.
- Other experiments(14,16,17,24,25) will be checked for consistency with Xuyang's results.
- In depth analysis for the experiments will be done once the efficiency check is complete.