The role of $|V_{cb}|$: global UT fits & constraining |DF|=2 NP

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101031558"

Luiz VALE SILVA (IFIC, UV – CSIC) [CKMfitter 2023 update: see CKM 2023 @ Santiago]

[Charles, Descotes-Genon, Ligeti, Monteil, Papucci, Trabelsi, LVS, PRD 102, 056023 (2020), arXiv:2006.04824]

2023 Belle II Physics Week, 30/10/2023

Flavor in the quark sector

(spectrum of fermion masses, CKM matrix)

Theoretical inputs

- Flavor transitions pattern is likely to change in the presence of NP
- Goal is testing the SM, and possibly point out tensions
- Many flavour observables enjoy the status of precision physics, thanks to progress in different fronts (e.g. <u>QCD inputs</u>)

Luiz VALE SILVA (IFIC, UV - CSIC) – "Role of $|V_{cb}|$ "

The Cabibbo-Kobayashi-Maskawa matrix

Luiz VALE SILVA (IFIC, UV - CSIC) – "Role of |V_{cb}|"

Progress over the years

 \rightarrow Long road for a better theoretical control (e.g., Lattice QCD), and more accurate data (LEP, KTeV, NA48, BaBar, Belle, CDF, DØ, LHCb, CMS, ...)

Current status of flavour

- A single phase must be responsible for CP violation across distinct flavour sectors
- Observables of very different natures are available

$$\begin{split} A &= 0.8215^{+0.0047}_{-0.0082} \text{ (0.8\% unc.)} \\ \lambda &= 0.22498^{+0.00023}_{-0.00021} \text{ (0.1\% unc.)} \\ \bar{\rho} &= 0.1562^{+0.0112}_{-0.0040} \text{ (4.9\% unc.)} \\ \bar{\eta} &= 0.3551^{+0.0051}_{-0.0057} \text{ (1.5\% unc.)} \\ &= 68\% \text{ C.L. intervals} \end{split}$$

Rephasing invariant:

 $\frac{|V_{us}|}{(|V_{ud}|^2 + |V_{us}|^2)^{1/2}} = \lambda, \quad \frac{|V_{cb}|}{(|V_{ud}|^2 + |V_{us}|^2)^{1/2}} = A\lambda^2, \quad -\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} = \bar{\rho} + i\bar{\eta}$

Luiz VALE SILVA (IFIC, UV - CSIC) – "Role of $|V_{\mbox{\tiny cb}}|$ "

Consistency among observables

|V_{cb}|: excl. & incl. B-meson decays

\rightarrow Excl. and incl. have similar error budgets

 \rightarrow Our inputs for excl. and incl. differ by about 2σ

 \rightarrow Similar averages:

'21, $|V_{cb}|_{\rm SL}$ = (41.15 ± 0.34 ± 0.45) × 10⁻³ '23, $|V_{cb}|_{\rm SL}$ = (41.22 ± 0.24 ± 0.37) × 10⁻³ (individual inputs given in back up; see discussion in "SL b-Hadron Decays" PDG 2023 review)

NP in B meson mixing

- Address <u>present and future bounds</u> on NP in ∆B|=2, and discuss <u>future limitations</u>
- |\[\triangle B|=2: NP competes with suppressions in the SM (GIM/CKM), and enjoys the status of precision physics

 $V_{tb} \; V_{ts} * \thicksim - V_{cb}$

Not discussing D meson mixing

[K meson mixing: PRD 89, 033016 (2014), arxiv:1309.2293]

• Combine projections for future data: need global fit including "tree" and "loop" observables

[see e.g. CKMfitter]

Luiz VALE SILVA (IFIC, UV - CSIC) – "NP in B meson mixing"

NP in B meson mixing

- NP in $|\Delta B|=2$: h_d and h_s set sizes
- Assumptions:
 - No NP in $|\Delta F|=1$: tree level in SM (γ , $|V_{ub}|$, $|V_{cb}|$, ...) free of NP
 - NP is short-distance
 - Unitarity of the CKM 3x3 matrix
 - Unrelated NP in B_d and B_s systems [See: PRD 89, 033016 arxiv:1309.2293]
- SMEFT: four-quark operators of different chiral structures

[See: PRD 89, 033016 (2014),

CKM (in presence of NP),

bag parameters,

 $M_{12} = M_{12}^{\rm SM} \times (1 + \frac{h}{h} e^{2i\sigma})$

 \downarrow decay constants

Present status of NP in B meson mixing

- Agreement with the SM ($h_d = h_s = 0$) at $\sim 1\sigma$
- Allowed size for NP at the level of O(20%)! ⁻
- Extractions of ρ and η (Wolfenstein parm.) degrade by factor ~3

Status as of Summer '19

10

Luiz VALE SILVA (IFIC, UV - CSIC) – "NP in B meson mixing"

New era of flavour ahead

Benchmarks for the future:

- Phase I: LHCb-upgrade I 50/fb, & Belle II 50/ab
- Phase II: LHCb-upgrade II 300/fb, & Belle II upgrade 250/ab

Experimental and theoretical inputs

[For projections, see e.g. Belle II Physics Book, 1808.10567]

[Full list of projections given in back up]

• $|V_{ub}|_{sL} \& |V_{cb}|_{sL}$: respectively 0.9% & 1.0% @ Phase II (Belle II U.)

[incl. vs excl. inputs and impact on extraction of NP in $|\Delta F|=2$: De Bruyn, Fleischer, Malami, van Vliet]

Phases I and II uncs. for Lattice QCD (decay constants, bag parameters) < 1%

Literature discusses Lattice QCD projections up to Phase II (QED effects included)

Future improvements

Luiz VALE SILVA (IFIC, UV - CSIC) - "NP in B meson mixing"

13

Phase I

0.073

0.065

p-value 1.0

0.9

0.8

0.7

0.6

0.5 0.4

0.3

0.2

0.1

0.0

0.10

Phase II

0.049

0.044

Bottlenecks

Necessary improvements beyond current expectations for enhancing sensitivity to NP: [SD: Brod. Gorbahn. Stamou

- Lattice QCD (also short-distance QCD corrections)
- **V**_{cb}, overall normalization (Wolfenstein parameter A)
- Individual impacts on h_d and h_s: improvements by O(20-30)%

Luiz VALE SILVA (IFIC, UV - CSIC) - "NP in B meson mixing"

et al., in progress]

Future reach to NP in B meson mixing

$$\frac{C_{ij}^2}{\Lambda^2} (\bar{q}_{i,L} \gamma_\mu q_{j,L})^2, \qquad h \simeq 1.5 \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \frac{(4\pi)^2}{G_F \Lambda^2} \simeq \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \left(\frac{4.5 \text{ TeV}}{\Lambda}\right)^2, \\ \sigma = \arg(C_{ij} \lambda_{ij}^{t*}),$$

- In the absence of suppressions: NP scale >> TeV
- Possible flavour and loop suppressions: alleviate bounds on NP

		Sensitivity for Summer 2019 [TeV]		Phase I Sensitivity [TeV]		Phase II Sensitivity [TeV]	
Couplings	NP loop order	B_d mixing	B_s mixing	B_d mixing	B_s mixing	B_d mixing	B_s mixing
$\overline{ C_{ij} = V_{ti}V_{tj}^* }$	Tree level	9	13	17	18	20	21
(CKM-like)	One loop	0.7	1.0	1.3	1.4	1.6	1.7
$ C_{ij} = 1$	Tree level	1×10^{3}	3×10^2	2×10^3	4×10^2	2×10^{3}	5×10^2
(No hierarchy)	One loop	80	20	2×10^2	30	2×10^2	40

Luiz VALE SILVA (IFIC, UV - CSIC) - "NP in B meson mixing"

Conclusions

- Flavour physics: crucial in shaping the SM, but also in looking for candidates of NP
- V_{cb}: tests of CKM unitarity
- $|\Delta B| = 2$: <u>only one flavour aspect</u> of future experimental and theoretical progress
- Allowed NP in B meson mixing still large: bounds will largely improve
- Identified future limitations in Phase II:

LQCD and $|V_{cb}| \rightarrow$ bounds on NP at 1-2% of SM

CKMfitter Collaboration

MORE DETAILS @ CKMfitter

Jérôme Charles, Theory Olivier Deschamps, LHCb Sébastien Descotes-Genon, Theory Stéphane Monteil, LHCb Jean Orloff, Theory Wenbin Qian, LHCb/BESIII Vincent Tisserand, LHCb/BABAR Karim Trabelsi, Belle/Belle II Philip Urquijo, Belle/Belle II Luiz Vale Silva, Theory

BACK UP!

CKMfitter 2023 inputs for |V_{cb}|

$|V_{ub}|$ and $|V_{cb}|$ plane

$$\rightarrow |V_{ub}|/|V_{cb}|_{incl} = 0.100 \pm 0.006 \pm 0.003$$
 (GGOU)

[preliminary Belle '23 (tagged)] [See L. Cao @ EPS-HEP; M. Prim on Tue @ 13h00] $\rightarrow |V_{cb}|_{incl.}$ and $|V_{ub}|_{excl.}$ are preferred by their indirect extractions

Experimental quantities vs. theoretical ones

Observables considered in the fit that are modified by NP in $|\Delta B|=2$:

$\Delta_q =$	$ \Delta_q e^{i2\Phi_q^{ m NP}}$

parameter	prediction in the presence of NP
Δm_q	$ \Delta_q^{\rm NP} imes \Delta m_q^{ m SM}$
2eta	$2\beta^{\text{SM}} + \Phi^{\text{NP}}_d$
$2eta_s$	$2\beta_s^{\text{SM}} - \Phi_s^{\text{NP}}$
2lpha	$2(\pi - \beta^{\text{SM}} - \gamma) - \Phi^{\text{NP}}_d$
$\Phi_{12,q} = \operatorname{Arg}\left[-\frac{M_{12,q}}{\Gamma_{12,q}}\right]$	$\Phi_{12,q}^{\scriptscriptstyle\mathrm{SM}}+\Phi_q^{\scriptscriptstyle\mathrm{NP}}$
A^q_{SL}	$\frac{\Gamma_{12,q}}{M_{12,q}^{\mathrm{SM}}} \times \frac{\sin(\Phi_{12,q}^{\mathrm{SM}} + \Phi_q^{\mathrm{NP}})}{ \Delta_q^{\mathrm{NP}} }$
$\Delta\Gamma_q$	$2 \Gamma_{12,q} \times \cos(\Phi_{12,q}^{\rm SM} + \Phi_q^{\rm NP})$

Luiz VALE SILVA (IFIC, UV - CSIC) – "NP in B meson mixing"

Experimental and theoretical inputs

	Central	Uncertainties			Reference	
	values	Current [28]	Phase I	Phase II	Phase III	Phases I-III
Vud	0.97437	± 0.00021	id	id	id	[28]
$ V_{us} f_{+}^{K\to\pi}(0)$	0.2177	± 0.0004	id	id	id	[28]
V _{cd}	0.2248	± 0.0043	± 0.003	id	id	[40,41]
V _{cs}	0.9735	± 0.0094	id	id	id	[28,40,41]
$\Delta m_d \text{ [ps}^{-1}\text{]}$	0.5065	± 0.0019	id	id	id	[17]
$\Delta m_s [\mathrm{ps}^{-1}]$	17.757	± 0.021	id	id	id	[17]
$ V_{cb} _{\rm SL} \times 10^3$	12.26	± 0.58	± 0.60	± 0.44	id	[29]
$ V_{cb} _{W \to cb} \times 10^3$	42.20				± 0.17	[34-36]
$ V_{ub} _{SL} \times 10^3$	3.56	± 0.22	± 0.042	± 0.032	id	[29]
$ V_{ub}/V_{cb} $ (from Λ_b)	0.0842	± 0.0050	± 0.0025	± 0.0008	id	[30]
$\mathcal{B}(B \to \tau \nu) \times 10^4$	0.83	± 0.24	± 0.04	± 0.02	± 0.009	[29,34]
$\mathcal{B}(B \to \mu \nu) \times 10^6$	0.37		± 0.03	± 0.02	id	[29]
$\sin 2\beta$	0.680	± 0.017	± 0.005	± 0.002	± 0.0008	[29,30,34]
α[°] (mod 180°)	91.9	± 4.4	± 0.6	id	id	[29]
γ[°] (mod 180°)	66.7	± 5.6	± 1	± 0.25	± 0.20	[29,30,34]
β_s [rad]	-0.035	± 0.021	± 0.014	± 0.004	± 0.002	[30,34]
$A_{SL}^d \times 10^4$	-6	±19	± 5	± 2	± 0.25	[14,17,34,37]
$A_{SL}^s \times 10^5$	3	± 300	± 70	± 30	± 2.5	[14,17,34,37]
\bar{m}_t [GeV]	165.30	±0.32	id	id	± 0.020	[28,34]
$\alpha_s(m_Z)$	0.1185	± 0.0011	id	id	± 0.00003	[28,34]
$f_{+}^{K \to \pi}(0)$	0.9681	± 0.0026	± 0.0012	id	id	[30]
f_K [GeV]	0.1552	± 0.0006	± 0.0005	id	id	[30]
f_{B_s} [GeV]	0.2315	± 0.0020	± 0.0011	id	id	[30]
B_{B_s}	1.219	± 0.034	± 0.010	± 0.007	id	[30]
f_{B_s}/f_{B_d}	1.204	± 0.007	± 0.005	id	id	[30]
B_{B_s}/B_{B_d}	1.054	± 0.019	± 0.005	± 0.003	id	[30]
$\tilde{B}_{B_s}/\tilde{B}_{B_d}$	1.02	± 0.05	± 0.013	id	id	[30,42,43]
$\tilde{B}_{B_{c}}$	0.98	± 0.12	± 0.035	id	id	[30,42,43]
η_B	0.5522	± 0.0022	id	id	id	[44]

Luiz VALE SILVA (IFIC, UV - CSIC) - "NP in B meson mixing"

arXiv:2106.12168]

Plus

136, 912

also EPJPlus 1 EPJPlus 136, 9

and and

Different representation

Luiz VALE SILVA (IFIC, UV - CSIC) – "NP in B meson mixing"

Current sensitivity to SMEFT dim.-8

- |ΔF|=2 dim.-6 operators: previous slide set bounds for (V-A)x(V-A)
- (|ΔF|=1 dim.-6)²=(|ΔF|=2 dim.-8 operators)
- |ΔF|=1 quqd-operator does not change global fit analysis

NP bag parameters: [ETM '15, HPQCD '19]

[LVS, arXiv:2201.03038]

|ΔF|=2 dim.-8: sensitivity to multi-TeV NP effects

Luiz VALE SILVA (IFIC, UV - CSIC) - "NP in B meson mixing"

Discovery prospects

B meson mixing observables also provide potential **discovery for NP**

Luiz VALE SILVA (IFIC, UV - CSIC) - "NP in B meson mixing"