Experimental challenges in exclusive measurements – topic list I

- Review limiting uncertainties in existing measurements
- List assumptions about evolution of outside input (theory, Lattice)
- What is needed from experiment (in particular Belle II)?
 - Lots of recent progress in FF predictions and measurements; important for $|V_{cb}|$
 - Reduce normalization uncertainties
 - Reduce MC statistical uncertainties
 - Reduce uncertainties on uncertainties

- Normalization uncertainties
 - Lepton ID efficiency (control samples, isolation / environment corrections), Kaon ID efficiency
 - tracking efficiency, kinematic fit efficiency
 - B tagging "calibration"
 - B counting (luminosity)
- MC statistics
 - Enters through fit template shapes for signals, cross-feeds, backgrounds as well as in signal efficiency. Need better N_{MC} /\$ as sample sizes increase
 - Also enters into reweightings that correct for modeling problems
 - Hard to justify generating huge samples if the modeling is poor, so it also needs to improve

Experimental challenges in exclusive measurements – topic list II

- Large feed-down from $D^* \rightarrow D\pi$ decays
 - Simultaneous analysis of $B \to D^* \ell \nu, B \to D \ell \nu$ helps
 - Statistical discrimination between $B \rightarrow V \ell \nu$ and $B \rightarrow P \ell \nu$ transitions using kinematics works well even if the slow π is ignored
 - Revive $B \to D(X) \ell \nu$ approach
- Content of "gap" not well understood

 $\mathcal{B}(B \to X_c \ell \nu) - \sum_{j} \mathcal{B}(B \to H_j \ell \nu) \sim 0.8\%$ Measured or isospin conj

• Untagged analyses will not be competitive at some point due to higher backgrounds (for $|V_{cb}|$ this is probably at ~few ab^{-1})

- Hadronic tags + $D^{(*)}\ell v$
 - M_{miss}^2 is a good discriminant against additional missing particles $(D^{**}\ell\nu, D^{(*)}D_s^{(*)-}, c\bar{c}, ...)$
 - Had tagging efficiency for $B^+(B^0)$ is ~0.3%(0.2%)
 - Large "calibration factors" needed to correct MC modeling (mostly from modeling large number of un/poorly measured decay modes)
- Double semileptonic decays, $D^{(*)}\ell^-\nu$, $\overline{D}^{(*)}\ell^+\nu$
 - $\cos \theta_{BY}$ is a weaker discriminant than $M_{\rm miss}^2$
 - SL tagging efficiency for $B^+(B^0)$ is ~0.9%(0.5%)
 - Dominated by a few decay modes $(D^{(*)}\ell\nu, a \text{ few well-measured } D^0 \text{ and } D^+ \text{ decays});$ easier to "calibrate" so better for normalization