Belle II Physics Week

Form Factors interplay with polarisations and asymmetries in $B \rightarrow D^{*} \ell \nu$ decays

M. Fedele

based on arXiv:2305.15457 in collaboration with:
M. Blanke, A. Crivellin, S. Iguro, U. Nierste, S. Simula \& L. Vittorio

Introduction to $b \rightarrow c$ anomalies

- Tree level, theoretically clean processes with large Br (\sim few \%)

Sensitive to NP via LFUV tests

$$
R\left(D^{(*)}\right)=\frac{\mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}\right)} \quad l=e, \mu, \tau
$$

Experimental average (HFLAV):

$$
\begin{aligned}
R(D) & =0.357 \pm 0.029 \\
R\left(D^{*}\right) & =0.284 \pm 0.012
\end{aligned}
$$

SM predictions:

$$
\begin{aligned}
R(D) & =0.298 \pm 0.004 \\
R\left(D^{*}\right) & =0.254 \pm 0.005
\end{aligned}
$$

Comb. discrepancy at $\sim 3.3 \sigma$ level hinting at τ over-abundance

What if it's a FF issue?

0.240 .250 .260 .270 .280 .290 .30 $\mathcal{R}\left(D^{*}\right)$

The SM prediction for $R\left(D^{*}\right)$ might not be as stable as originally thought!

Different Form Factors approaches have different predictions, with noticeable increase on the prediction for the latest determinations (and strongly correlated to $\left|V_{c b}^{\text {excl }}\right|$ determination)

Could the discrepancy actually arise from issues on the FF estimates?

The IgWa approach

Expand the $\operatorname{FF} h_{X}(w)=\xi(w) \hat{h}_{X}(w)$, with $\xi(w)$ the leading Isgur-Wise function, in α_{s} and $1 / m_{b, c}$

$$
\# \hat{h}_{X}=\hat{h}_{X, 0}+\frac{\alpha_{s}}{\pi} \delta \hat{h}_{X, \alpha_{s}}+\frac{\bar{\Lambda}}{2 m_{b}} \delta \hat{h}_{X, m_{b}}+\frac{\bar{\Lambda}}{2 m_{c}} \delta \hat{h}_{X, m_{c}}+\left(\frac{\bar{\Lambda}}{2 m_{c}}\right)^{2} \delta \hat{h}_{X, m_{c}^{2}}
$$

Expand each of the 10 I-W functs. as a power of z, and fit to theory (LCSR and QCDSR) and experiment data up to a different order for each of the functions, selected by goodness-of-fit

$$
f(w)=f^{(0)}+8 f^{(1)} z+16\left(f^{(1)}+2 f^{(2)}\right) z^{2}+\frac{8}{3}\left(9 f^{(1)}+48 f^{(2)}+32 f^{(3)}\right) z^{3}+\mathcal{O}\left(z^{4}\right)
$$

The BGJS approach

Expand the FF as a series in $z=(\sqrt{w+1}-\sqrt{2}) /(\sqrt{w+1}+\sqrt{2})$, where $w=\left(m_{B}^{2}+m_{D^{*}}^{2}-q^{2}\right) /\left(2 m_{B} m_{D^{*}}\right)$

$$
f_{i}(z)=\frac{1}{P_{i}(z) \phi_{i}(z)} \sum_{k=0}^{n_{i}} a_{k}^{i} z^{k}
$$

Different expansion order for each FF (selected by goodness-of-fit)

Weak unitarity constraints imposed on series coefficients to ensure a rapid convergence of the series in the physical region, $0<z<0.056$

$$
\sum_{k=0}^{n_{g}}\left(a_{k}^{g}\right)^{2}<1, \quad \sum_{i=0}^{n_{f}}\left(a_{k}^{f}\right)^{2}+\sum_{k=0}^{n_{F_{1}}}\left(a_{k}^{\mathcal{F}_{1}}\right)^{2}<1
$$

Additional input coming from HQET required for pseudoscalar FF

The Lattice approach

Employs the same parameterization as the BGL approach, first results beyond non-zero recoil have been recently obtained

$$
f_{i}(z)=\frac{1}{P_{i}(z) \phi_{i}(z)} \sum_{k=0}^{n_{i}} a_{k}^{i} z^{k}
$$

Result is however not fully compatible with exp.
Problem with the slope?

The Dispersive Matrix approach

Goal: determine a form factor $f(t)$ starting from known values of $f\left(\mathrm{t}_{\mathrm{i}}\right)$, e.g. from Lattice

The starting point is the introduction of 2 ingredients: inner product and auxiliary function:

$$
\begin{aligned}
& \langle g \mid h\rangle=\frac{1}{2 \pi i} \oint_{|z|=1} \frac{d z}{z} \bar{g}(z) h(z) \\
& g_{t}(z) \equiv \frac{1}{1-\bar{z}(t) z}
\end{aligned} \Rightarrow \mathbf{M} \equiv\left(\begin{array}{ccccc}
\langle\phi f \mid \phi f\rangle & \left\langle\phi f \mid g_{t}\right\rangle & \left\langle\phi f \mid g_{t_{1}}\right\rangle & \cdots & \left\langle\phi f \mid g_{t_{N}}\right\rangle \\
\left\langle g_{t} \mid \phi f\right\rangle & \left\langle g_{t} \mid g_{t}\right\rangle & \left\langle g_{t} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t} \mid g_{t_{N}}\right\rangle \\
\left\langle g_{t_{1}} \mid \phi f\right\rangle & \left\langle g_{t_{1}} \mid g_{t}\right\rangle & \left\langle g_{t_{1}} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t_{1}\left|g_{t_{N}}\right\rangle}\right. \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\left\langle g_{t_{N}} \mid \phi f\right\rangle & \left\langle g_{t_{N}} \mid g_{t}\right\rangle & \left\langle g_{t_{N}} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t_{N}} \mid g_{t_{N}}\right\rangle
\end{array}\right)
$$

Matrix built out of inner products, hence its determinant is by construction positive semidefinite

The Dispersive Matrix approach

M_{11} obeys to the dispersion relation

$$
\frac{1}{2 \pi i} \oint_{|z|=1} \frac{d z}{z}|\phi(z) f(z)|^{2} \leq \chi \longrightarrow 0 \leq\langle\phi f \mid \phi f\rangle \leq \chi
$$

The Cauchy theorem allows to compute the remaining terms, and the semidefinite positiveness is not spoiled by replacing M_{11} by its upper limit

$$
\Rightarrow \mathbf{M}_{\chi}=\left(\begin{array}{ccccc}
\chi & \phi f & \phi_{1} f_{1} & \cdots & \phi_{N} f_{N} \\
\phi f & \frac{1}{1-z^{2}} & \frac{1}{1-z z_{1}} & \cdots & \frac{1}{1-z z_{N}} \\
\phi_{1} f_{1} & \frac{1}{1-z_{1} z} & \frac{1}{1-z_{1}^{2}} & \cdots & \frac{1}{1-z_{1} z_{N}} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\phi_{N} f_{N} & \frac{1}{1-z_{N} z} & \frac{1}{1-z_{N} z_{1}} & \cdots & \frac{1}{1-z_{N}^{2}}
\end{array}\right)
$$

Requiring the positiveness of the determinant allows to obtain a band for the FF, representing the envelope of the results of all possible (non) truncated z-expansions, like BGL ones

$$
\beta(z)-\sqrt{\gamma(z)} \leq f(z) \leq \beta(z)+\sqrt{\gamma(z)}
$$

The Dispersive Matrix approach

$$
\begin{aligned}
& \beta(z)-\sqrt{\gamma(z)} \leq f(z) \leq \beta(z)+\sqrt{\gamma(z)} \\
& \beta(z) \equiv \frac{1}{\phi(z) d(z)} \sum_{j=1}^{N} \phi_{j} f_{j} d_{j} \frac{1-z_{j}^{2}}{z-z_{j}}, \\
& \gamma(z) \equiv \frac{1}{1-z^{2}} \frac{1}{\phi^{2}(z) d^{2}(z)}\left(\chi-\chi_{\mathrm{DM}}\right), \\
& \chi_{\mathrm{DM}} \equiv \sum_{i, j=1}^{N} \phi_{i} f_{i} \phi_{j} f_{j} d_{i} d_{j} \frac{\left(1-z_{i}^{2}\right)\left(1-z_{j}^{2}\right)}{1-z_{i} z_{j}}, \\
& d(z) \equiv \prod_{m=1}^{N} \frac{1-z z_{m}}{z-z_{m}}, \\
& d_{j} \equiv \prod_{m \neq j=1}^{N} \frac{1-z_{j} z_{m}}{z_{j}-z_{m}} . \\
& \text { Unitarity requires } \gamma(z) \geq 0 \text {, which } \\
& \text { implies } \chi \geq \chi_{\text {DM }} \text {. Therefore, the FF } \\
& \text { at any given } z \text { is given by the } \\
& \Rightarrow \quad \text { convolution of } \gamma(z) \text { and } \beta(z) \text { with the } \\
& \text { distribution of input (lattice) data with } \\
& \chi>\chi_{\mathrm{DM}} \text { : input data is therefore } \\
& \text { filtered by unitarity! }
\end{aligned}
$$

Martinelli et al. employ only lattice as input data (and no exp.) because they want to have a fully theoretical prediction of FFs, without having to assume data to be SM-like

Not all that glitters is gold...

The DM FF approach is capable to address tension in $R\left(D^{*}\right)$ (and $\left|V_{c b}\right|$ incl. vs excl. discrepancy), but however in tension with new F_{L}^{ℓ} and A_{FB}^{ℓ} data!

Where is this coming from?

In order to understand the origin of the FF behaviours, it's instrumental to take a look at the helicity amp.

$$
H_{0}(w)=\frac{\mathcal{F}_{1}(w)}{\sqrt{m_{B}^{2}+m_{D^{*}}^{2}-2 m_{B} m_{D^{*}} w}} \quad \quad H_{ \pm}(w)=f(w) \mp m_{B} m_{D^{*}} \sqrt{w^{2}-1} g(w)
$$

which are used to build

$$
\begin{aligned}
& \frac{1}{\left|V_{c b}\right|^{2}} \frac{d \Gamma^{\ell}}{d w} \propto\left|H_{0}(w)\right|^{2}+\left|H_{+}(w)\right|^{2}+\left|H_{-}(w)\right|^{2} \\
& F_{L}^{\ell}(w)=\frac{\left|H_{0}(w)\right|^{2}}{\left|H_{0}(w)\right|^{2}+\left|H_{+}(w)\right|^{2}+\left|H_{-}(w)\right|^{2}} \\
& A_{\mathrm{FB}}^{\ell}(w)=\frac{\left|H_{-}(w)\right|^{2}-\left|H_{+}(w)\right|^{2}}{\left|H_{0}(w)\right|^{2}+\left|H_{+}(w)\right|^{2}+\left|H_{-}(w)\right|^{2}}
\end{aligned}
$$

A change in the shape of $\mathscr{F}_{1}(w)$ has a direct proportional impact on $R\left(D^{*}\right),\left|V_{c b}\right|, A_{F B}^{\ell}$ and F_{L}^{ℓ}

What if we try to perform a fit to this data?

Goal: perform a fit to $A_{F B}^{\ell}$ and F_{L}^{ℓ} using DM results for the FF as priors

$$
\begin{aligned}
\mathcal{R}\left(D^{*}\right)_{\mathrm{fit}} & =0.265 \pm 0.005 \\
F_{L, \text { fit }}^{\ell} & =0.515 \pm 0.005 \\
A_{\mathrm{FB}, \text { fit }}^{e} & =0.227 \pm 0.007 \\
A_{\mathrm{FB}, \text { fit }}^{\mu} & =0.222 \pm 0.007
\end{aligned}
$$

Re-emergence of $R\left(D^{*}\right)$ anomaly, disappearance of F_{L}^{ℓ} and A_{FB}^{ℓ} ones, change of $F_{1}(w)$ slope

Strong discrepancy between prior and posterior values, lattice results not even reproduced anymore!

Can we reproduce everything introducing NP in light leptons?

The DM FF offer the unique possibility to employ NP in light leptons to address anomalies (forbidden in other scenarios due to CKM limits)

Could this fix the issue?

Only evidence found for $g_{V_{L}}$; however F_{L}^{ℓ} and A_{FB}^{ℓ} are ratios, hence insensitive to it!

The absence of an hint for scalar/tensor WCs is due to more precise measurements in light lepton channel, together with m_{ℓ} suppression in interference terms with SM

$$
\begin{aligned}
g_{V_{L}} & =-0.054 \pm 0.015 \\
g_{V_{R}} & \in[-0.04,0.01] \\
g_{S_{L}} & \in[-0.07,0.02] \\
g_{S_{R}} & \in[-0.05,0.03] \\
g_{T} & \in[-0.01,0.02]
\end{aligned}
$$

\Rightarrow If the FF prediction for F_{L}^{ℓ} and A_{FB}^{ℓ} does not reproduce data, this cannot be fixed by introducing NP effects in light leptons as could be done for $R\left(D^{*}\right)$!

What about the DM results applied to other FFs?

Lattice FFs	$R\left(D^{*}\right)$	$P_{\tau}\left(D^{*}\right)$	$F_{L, \tau}$	$F_{L, \ell}$	$A_{F B, \ell}$
FNAL/MILC [14]	$0.275(8)$	$-0.529(7)$	$0.418(9)$	$0.450(19)$	$0.261(14)$
HPQCD [15]	$0.276(8)$	$-0.558(13)$	$0.448(16)$	$0.426(30)$	$0.272(21)$
JLQCD [16]	$0.248(8)$	$-0.508(11)$	$0.398(16)$	$0.561(29)$	$0.220(21)$
Average [14]-[16]	$0.266(9)$	$-0.529(11)$	$0.420(11)$	$0.471(36)$	$0.254(14)$
(PDG scale factor)	(2.0)	(2.1)	(1.6)	(2.6)	(1.3)
Combined [14]-[16]	$0.262(5)$	$-0.525(5)$	$0.436(8)$	$0.468(14)$	$0.253(10)$
Experimental value	$0.284(12)[32]$	$-0.38 \pm 0.51_{-0.16}^{+0.21}[37]$	$0.49(8)[34,35]$	$0.523(8)[13,36]$	$0.231(17)[13,36]$

We have an analogous pattern: either we reproduce $R\left(D^{*}\right)$ but observe a tension with new F_{L}^{ℓ} and A_{FB}^{ℓ} data (HPQCD) or viceversa (JLQCD)!

Implications to $V_{c b}$ determinations

Due to not including differential data as an input, bin-by-bin extraction of $V_{c b}$ is possible

Differences among these distributions reflect the differences among the different theoretical FFs results!

Conclusions

- Recent determination of $A_{F B}^{\ell}$ and F_{L}^{ℓ} have become available from Belle and Belle II, already with great precision!
- Theory prediction of $A_{F B}^{\ell}$ and F_{L}^{ℓ} strongly correlated to the one of $R\left(D^{*}\right)$; while the latter can be modified by NP effects, the former are strongly NP-insensitive...
- Theory determinations of FF should therefore take in great attention their implications of the predictions for $A_{F B}^{\ell}$ and F_{L}^{ℓ}, and the consequent impact on the extraction of $\left|V_{c b}^{\text {excl }}\right|$!

