

$V_{c b}$ and $V_{u b}$ from Lattice

Judd Harrison

Belle II Physics week
30 Oct - 3 Nov

Outline

I will discuss new and ongoing lattice predictions for

- $b \rightarrow u \ell \bar{\nu}$ semileptonic decays: $B \rightarrow \pi \ell \bar{\nu}$
$-b \rightarrow c \ell \bar{\nu}$ semileptonic decays: $B_{(s)} \rightarrow D_{(s)}^{*} \ell \bar{\nu}$
- Ongoing work on other relevant decays
\rightarrow Focus will be mostly on new results for $B \rightarrow D^{*}$

$B \rightarrow \pi$

In SM only f_{+}needed to describe differential rate for light leptons $\ell=e, \mu$:

$$
\begin{aligned}
\frac{d \Gamma(B \rightarrow \pi \ell \bar{\nu})}{d q^{2}} & =\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{24 \pi^{3}}\left|\vec{p}_{\pi}\left(q^{2}\right)\right|^{3}\left|f_{+}\left(q^{2}\right)\right|^{2} \\
\left\langle\pi\left(p_{\pi}\right)\right| V^{\mu}\left|B\left(p_{B}\right)\right\rangle & =f_{+}\left(q^{2}\right)\left[p_{B}^{\mu}+p_{\pi}^{\mu}-\frac{M_{B}^{2}-M_{\pi}^{2}}{q^{2}} q^{\mu}\right]+f_{0}\left(q^{2}\right) \frac{M_{B}^{2}-M_{\pi}^{2}}{q^{2}} q^{\mu}
\end{aligned}
$$

Form factors computed on the lattice from 2 and 3 point correlation functions, for $B \rightarrow \pi$ with current J :

To simulate b-quarks on the lattice, we typically require $a m_{b}<1$. For fixed volume, this requires small lattice spacings $a<1 / m_{b}$ as well as a large number of lattice points. This makes calculations at the physical b very expensive.

Modern solution:

- Perform lattice calculations at multiple masses, m_{h}, below m_{b}, using the same relativistic action for all quarks.
- Fit results using some HQET-like form to disentangle $a m_{h}$ discretisation effects and physical m_{h} dependence.

This approach allows control of $a m_{h}$ discretisation effects while also obtaining precise results at the physical $m_{h}=m_{b}$ point.

$B \rightarrow \pi$, JLQCD [2203.04938]

For $B \rightarrow \pi$, most recent calculation from JLQCD, using fully relativistic Möbius domain wall heavy quarks. Fit is done to form factors f_{1} and f_{2} :

$$
\left\langle\pi\left(p_{\pi}\right)\right| V^{\mu}\left|B\left(v=p_{B} / M_{B}\right)\right\rangle=2\left[f_{1}\left(v \cdot p_{\pi}\right) v^{\mu}+f_{2}\left(v \cdot p_{\pi}\right) \frac{p_{\pi}^{\mu}}{v \cdot p_{\pi}}\right]
$$

Lattice data for f_{1} and f_{2} are fit to a function describing chiral and $1 / m_{Q}$ dependence, as well as discretisation and mistuning effects.

The extrapolation in m_{Q} and M_{π} looks very reasonable

$B \rightarrow \pi, \mathrm{JLQCD}$ [2203.04938]

Resulting form factors (in $f_{+/ 0}$ basis) can be compared to older calculations from RBC/UKQCD [1501.05373] and Fermilab/MILC [1503.07839]

\rightarrow good general agreement on f_{+}

$B \rightarrow \pi$, JLQCD [2203.04938]

Continuum FFs commonly parameterised using Bourrely-Caprini-Lellouch (BCL) expansion [0807.2722]

$$
\begin{aligned}
f_{+}\left(q^{2}\right) & =\frac{1}{1-q^{2} / M_{B^{*}}^{2}} \sum_{k=0}^{N_{z}-1} b_{k}^{+}\left[z^{k}-(-1)^{k-N_{z}} \frac{k}{N_{z}} z^{N_{z}}\right] \\
f_{0}\left(q^{2}\right) & =\sum_{k=0}^{N_{z}-1} b_{k}^{0} z^{k}, \quad z\left(q^{2}, t_{0}\right)=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}+t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}+t_{0}}}
\end{aligned}
$$

Good agreement between experimentally measured BCL parameters and JLQCD lattice-only results.

$B \rightarrow \pi$, JLQCD [2203.04938]

JLQCD fit their lattice FFs together with experimental data to find

$$
\left|V_{u b}\right|=3.93 \pm 0.41 \times 10^{-3}
$$

Large uncertainty on $\left|V_{u b}\right|$ from JLQCD - need more precise lattice results.

$B \rightarrow D^{*} \ell \bar{\nu}$

For $B \rightarrow D^{*} \ell \bar{\nu}$ we require 4 form factors to describe the decay in SM, three for the axial-vector current and 1 for the vector current:

$$
\begin{aligned}
\left\langle D^{*}\right| \bar{c} \gamma^{\mu} b|\bar{B}\rangle= & i \sqrt{M_{B} M_{D^{*}}} \varepsilon^{\mu \nu \alpha \beta} \epsilon_{\nu}^{*} v_{\alpha}^{\prime} v_{\beta} h_{V} \\
\left\langle D^{*}\right| \bar{c} \gamma^{\mu} \gamma^{5} b|\bar{B}\rangle= & \sqrt{M_{B} M_{D^{*}}}\left[h_{A_{1}}(w+1) \epsilon^{* \mu}\right. \\
& \left.-h_{A_{2}}\left(\epsilon^{*} \cdot v\right) v^{\mu}-h_{A_{3}}\left(\epsilon^{*} \cdot v\right) v^{\prime \mu}\right]
\end{aligned}
$$

There are also 3 tensor form factors needed to include potential new physics:

$$
\begin{aligned}
\left\langle D^{*}\right| \bar{c} \sigma^{\mu \nu} b|\bar{B}\rangle= & -\sqrt{M_{B} M_{D^{*}}} \varepsilon^{\mu \nu \alpha \beta}\left[h_{T_{1}} \epsilon_{\alpha}^{*}\left(v+v^{\prime}\right)_{\beta}\right. \\
& \left.+h_{T_{2}} \epsilon_{\alpha}^{*}\left(v-v^{\prime}\right)_{\beta}+h_{T_{3}}\left(\epsilon^{*} \cdot v\right) v_{\alpha} v_{\beta}^{\prime}\right]
\end{aligned}
$$

$B \rightarrow D^{*} \ell \bar{\nu}$

Calculation strategy on lattice is similar to $B \rightarrow \pi$ case. Extract form factors from 2 and 3 point correlation functions:

D^{*} interpolating operator $\mathcal{O}_{D^{*}}^{\nu}=\bar{u} \gamma^{\nu} c$ comes with Lorentz index ν, chosen to pick out FFs.

$B \rightarrow D^{*} \ell \bar{\nu}: H P Q C D ~[2304.03137]$

HPQCD calculation of SM+Tensor FFs, fully relativistic HISQ action for all quarks

- $2+1+1$ second generation MILC HISQ ensembles with charm in the sea
- non-perturbative current renormalisation
- small amh discretisation effects in HISQ \rightarrow good coverage of w-range

$B \rightarrow D^{*} \ell \bar{\nu}: H P Q C D ~[2304.03137]$

HPQCD normalised differential decay rates do not agree well with Belle data [1809.03290]

Simultaneous fit to HPQCD FFs, Belle data and LHCb $B_{s} \rightarrow D_{s}^{*} \ell \bar{\nu}$ data gives

$$
\left|V_{c b}\right|=39.36(54)_{\exp }(61)_{\mathrm{latt}} \times 10^{-3}
$$

$B \rightarrow D^{*} \ell \bar{\nu}: H P Q C D[2304.03137]$

HPQCD calculation of SM+Tensor FFs, fully relativistic HISQ action for all quarks

Tensor FFs do not agree well with heavy quark expansion (HQE) fits to light-cone sum-rules and older $h_{A_{1}}(w=1)$ and $B \rightarrow D$ lattice results [1912.09335]

$B \rightarrow D^{*} \ell \bar{\nu}$

Two other recent lattice calculations of vector and axial-vector FFs: Fermilab/MILC SM FFs [2105.14019], JLQCD SM FFs [2306.05657]. $h_{A_{1}}$ and h_{V} agree reasonably with heavy quark expansion (HQE) fits to light-cone sum-rules and older $h_{A_{1}}(w=1)$ and $B \rightarrow D$ lattice results [1912.09335].

$B \rightarrow D^{*} \ell \bar{\nu}$

However, ratios do not seem to agree so well \rightarrow correlations?

$$
R_{0}=\frac{1}{1+r}\left(w+1+w \frac{r h_{A_{2}}-h_{A_{3}}}{h_{A_{1}}}-\frac{h_{A_{2}}-r h_{A_{3}}}{h_{A_{1}}}\right), \quad R_{1}=\frac{h_{V}}{h_{A_{1}}}, \quad R_{2}=\frac{r h_{A_{2}}+h_{A_{3}}}{h_{A_{1}}}
$$

$B \rightarrow D^{*} \ell \bar{\nu}:$ Belle II

New results from Belle II [2310.01170]!

$B \rightarrow D^{*} \ell \bar{\nu}:$ Belle II

New results from Belle II [2310.01170] seem to agree with expectations from HQE, particularly for R_{2}

- Including only Fermilab/MILC $h_{A_{1}}$ (blue band): $\left|V_{c b}\right|=40.3 \pm 1.2 \times 10^{-3}$, $p-$ value $=21 \%$
- Including $h_{A_{1}}, R_{1}$ and R_{2} (brown band): $\left|V_{c b}\right|=38.3 \pm 1.1 \times 10^{-3}$, $p-$ value $=0.04 \%$

$B \rightarrow D^{*} \ell \bar{\nu}$: Things to look into

Issue seems to be with $h_{A 2}, h_{A 3}$ - need to look for possible biases in chiral-continuum fit.

- Are we including enough kinematic terms/estimating truncation errors correctly/using broad enough priors?
- Are we including discretisation effects consistently? e.g. do different parameterisations allow for $(a p)^{2}$ effects?
Other things we can improve:
- HPQCD and JLQCD have been conservative with lattice heavy quark mass - can get up to the B in future updates.
- HPQCD can use time reversed 3pt functions together with lattice rotations of current setup, to improve statistics.
- Fermilab heavy quark + HISQ calculation in not too distant future.
- Work to incoorporate HQE information into HPQCD chiral continuum extrapolation.

$b \rightarrow u \ell \bar{\nu}$: Ongoing exclusive lattice QCD calculations

- JLQCD working on $B \rightarrow \pi$ update with increased statistics and heavier masses.
- HPQCD currently working on $B_{(s)} \rightarrow \pi(K)$.
- RBC/UKQCD working on $B \rightarrow \pi, B_{s} \rightarrow D_{s}$ with new results this year for $B_{s} \rightarrow K\left(\left|V_{u b}\right|=3.8(6) \times 10^{-3}\right)[2303.11280]$
- Fermilab/MILC working on updates to $B \rightarrow D^{*}$ (see talk by Alejandro Vaquero)
- Fermilab/MILC also working on $B \rightarrow \pi$ and related decays $B_{s} \rightarrow K$ and $B_{s} \rightarrow D_{s}$ [2301.09229], from which the ratio $\left|V_{u b} / V_{c b}\right|$ can be computed:

$\mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=0.1 \mathrm{~ms}, \mathrm{mh}=1.5 \mathrm{mc}$ $a=0.088 \mathrm{fm}, \mathrm{ml}=0.1 \mathrm{~ms}, \mathrm{mh}=2.0 \mathrm{mc}$ $\mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=0.1 \mathrm{~ms}, \mathrm{mh}=2.5 \mathrm{mc}$ $\mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=$ phys, $\mathrm{mh}=1.5 \mathrm{mc}$ $\mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=$ phys, $\mathrm{mh}=2.0 \mathrm{mc}$ $\mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=$ phys, $\mathrm{mh}=2.5 \mathrm{mc}$ $\mathrm{a}=0.057 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=2.0 \mathrm{mc}$ $\mathrm{a}=0.057 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=3.0 \mathrm{mc}$ $\mathrm{a}=0.057 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=4.0 \mathrm{mc}$ $\mathrm{a}=0.057 \mathrm{fm}, \mathrm{ml}=0.1 \mathrm{~ms}, \mathrm{mh}=2.0 \mathrm{mc}$ $a=0.057 \mathrm{fm}, \mathrm{ml}=0.1 \mathrm{~ms}, \mathrm{mh}=3.0 \mathrm{mc}$ $\mathrm{a}=0.057 \mathrm{fm}, \mathrm{ml}=0.1 \mathrm{~ms}, \mathrm{mh}=4.0 \mathrm{mc}$ $\mathrm{a}=0.042 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=2.0 \mathrm{mc}$ $\mathrm{a}=0.042 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=2.0 \mathrm{mc}$
$\mathrm{a}=0.042 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=3.0 \mathrm{mc}$ $\mathrm{a}=0.042 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=3.0 \mathrm{mc}$ $\mathrm{a}=0.042 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=4.0 \mathrm{mc}$
$\mathrm{a}=0.042 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mb}=1.0 \mathrm{mb}$ $\mathrm{a}=0.042 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=1.0 \mathrm{mb}$
$\mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=0.1 \mathrm{~ms}, \mathrm{mh}=1.5 \mathrm{mc}$ $\mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=0.1 \mathrm{~ms}, \mathrm{mh}=2.0 \mathrm{mc}$ $\mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=0.1 \mathrm{~ms}, \mathrm{mh}=2.5 \mathrm{mc}$ $\mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=$ phys, $\mathrm{mh}=1.5 \mathrm{mc}$ $\mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=$ phys, $\mathrm{mh}=2.0 \mathrm{mc}$ $\mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=$ phys, $\mathrm{mh}=2.5 \mathrm{mc}$ $\mathrm{a}=0.057 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=2.0 \mathrm{mc}$ $\mathrm{a}=0.057 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=3.0 \mathrm{mc}$ $\mathrm{a}=0.057 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=4.0 \mathrm{mc}$ $\mathrm{a}=0.057 \mathrm{fm}, \mathrm{ml}=0.1 \mathrm{~ms}, \mathrm{mh}=2.0 \mathrm{mc}$ $\mathrm{a}=0.057 \mathrm{fm}, \mathrm{ml}=0.1 \mathrm{~ms}, \mathrm{mh}=3.0 \mathrm{mc}$ $\mathrm{a}=0.057 \mathrm{fm}, \mathrm{ml}=0.1 \mathrm{~ms}, \mathrm{mh}=4.0 \mathrm{mc}$ $a=0.042 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, m h=2.0 \mathrm{mc}$ $a=0.042 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=2 . \mathrm{mc}$
$\mathrm{a}=0.042 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=3.0 \mathrm{mc}$ $a=0.042 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=3.0 \mathrm{mc}$
$\mathrm{a}=0.042 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=4.0 \mathrm{mc}$ $\mathrm{a}=0.042 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=4.0 \mathrm{mc}$
$\mathrm{a}=0.042 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=1.0 \mathrm{mb}$
left: $B_{s} \rightarrow K$, right: $B_{s} \rightarrow D_{s}$

Inclusive $V_{c b}$ and $V_{u b}$

Inclusive determinations still use operator product expansion (OPE), find (HFLAV)

$$
\begin{aligned}
& \left|V_{u b}^{\mathrm{inc}}\right|=4.19 \pm 0.17 \times 10^{-3} \\
& \left|V_{c b}^{\mathrm{inc}}\right|=42.19 \pm 0.78 \times 10^{-3}
\end{aligned}
$$

However, new lattice methods (Alessandro Barone, Shoji Hashimoto, Andreas Jüttner, Takashi Kaneko, Ryan Kellermann) allow for fully non-perturbative calculation of inclusive observables - these will provide a check of existing OPE results.

Inclusive on the Lattice [2305.14092]

The inclusive rate depends on the hadronic tensor, e.g. for $B_{s} \rightarrow X_{c} \ell \nu$

$$
\Gamma=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}}{24 \pi^{3}} \int_{0}^{q_{\max }^{2}} d q^{2} \sqrt{q^{2}} \bar{X}\left(q^{2}\right)
$$

where

$$
\bar{X}\left(q^{2}\right)=\sum_{l=0}^{2} \bar{X}^{(l)}\left(q^{2}\right)=\sum_{l=0}^{2} \int_{\omega_{\min }}^{\omega_{\max }} k_{\mu \nu}^{(l)}(q, \omega) W^{\mu \nu}(q, \omega)
$$

and

$$
W^{\mu \nu}(q)=\frac{1}{2 M_{B_{s}}} \int d x^{4} e^{i q \cdot x}\left\langle B_{s}\right| J^{\mu \dagger}(x) J^{\nu}(0)\left|B_{s}\right\rangle .
$$

Lattice correlation functions can give

$$
C_{\mu \nu}(q, t)=\int_{0}^{\infty} d \omega W_{\mu \nu}(q, \omega) e^{-\omega t}
$$

Laplace transform cannot be inverted. Luckily, only need to get \bar{X}

Inclusive on the Lattice [2305.14092]

Approximate kernel (with smoothed sigmoid in place of step) as polynomial in $e^{-\omega}$

$$
k_{\mu \nu}^{(I)}(q, \omega) \theta_{\sigma}\left(\omega_{\max }-\omega\right) \approx c_{0, \mu \nu}^{(I)}(q, \sigma)+c_{1, \mu \nu}^{(I)}(q, \sigma) e^{-\omega}+\ldots+c_{N, \mu \nu}^{(I)}(q, \sigma) e^{-N \omega}
$$

then

$$
\bar{X}^{(I)}\left(q^{2}\right)=\sum_{k=0}^{N} c_{k, \mu \nu}^{(I)} C^{\mu \nu}\left(q, k+2 t_{0}\right)
$$

This is not completely sufficient due to issues with noise - Chebyshev and Backus-Gilbert methods used to obtain accurate results.

- More details in [2305.14092], see [2005.13730] for details of pilot study on $B_{s} \rightarrow X_{c} \ell \nu$.

Summary

- New exclusive determination of $\left|V_{u b}\right|=3.93 \pm 0.41 \times 10^{-3}$ using JLQCD $B \rightarrow \pi$ FFs, consistent with existing inclusive and exclusive determinations. Large uncertainty, but update in progress and work by other collaborations in progress.
- New results for $B \rightarrow D^{*} \ell \bar{\nu}$ from Belle II inconsistent with Fermilab/MILC R_{1} and R_{2}, give $\left|V_{c b}\right|=40.3 \pm 1.2 \times 10^{-3}, p-$ value $=21 \%$ only including $h_{A 1}$ - closer to inclusive picture.
- New HPQCD $B \rightarrow D^{*} \ell \bar{\nu}$ FFs show similar discrepancy in R_{1} and R_{2} with HQE \rightarrow need to understand the origin of this effect.
- New JLQCD $B \rightarrow D^{*} \ell \bar{\nu}$ FFs are in better agreement, but larger uncertainties.
- Application of non-perturbative LQCD methods to inclusive decays progressing nicely.

Backup Slides

$B \rightarrow \pi$, JLQCD [2203.04938] - fit function

For $B \rightarrow \pi$, most recent calculation from JLQCD, using fully relativistic Möbius domain wall heavy quarks. Fit is done to form factors f_{1} and f_{2} :

$$
\left\langle\pi\left(p_{\pi}\right)\right| V^{\mu}\left|B\left(v=p_{B} / M_{B}\right)\right\rangle=2\left[f_{1}\left(v \cdot p_{\pi}\right) v^{\mu}+f_{2}\left(v \cdot p_{\pi}\right) \frac{p_{\pi}^{\mu}}{v \cdot p_{\pi}}\right]
$$

Lattice data for f_{1} and f_{2} are fit using the functions

$$
\begin{aligned}
f_{1}\left(v \cdot p_{\pi}\right)+f_{2}\left(v \cdot p_{\pi}\right) & =C_{0}\left(1+\sum_{n=1}^{3} C_{E^{n}} N_{E}^{n} E_{\pi}^{n}\right)\left(1+C_{\chi \log } \delta f^{B \rightarrow \pi}+C_{M_{\pi}^{2}} N_{M_{\pi}^{2}} M_{\pi}^{2}\right) \\
& \times\left(1+\frac{C_{M_{Q}} N_{M_{Q}}}{m_{Q}}\right)\left(1+C_{m_{s 5^{2}}} \delta m_{s \overline{5}^{2}}{ }^{2}\right) \\
& \times\left(1+C_{a^{2}}\left(a \Lambda_{Q C D}\right)^{2}+C_{\left(a m_{Q}\right)^{2}}\left(a m_{Q}\right)^{2}\right) \\
f_{2}\left(v \cdot p_{\pi}\right) & =D_{0}\left[\frac{E_{\pi}}{E_{\pi}+\Delta_{B}}\left(1+D_{E} N_{E} E_{\pi}\right)\right]\left(1+D_{\chi \log } \delta f^{B \rightarrow \pi}+D_{M_{\pi}^{2}} N_{M_{\pi}^{2}} M_{\pi}^{2}\right) \\
& \times\left(1+\frac{D_{M_{Q}} N_{M_{Q}}}{m_{Q}}\right)\left(1+D_{m_{s 5^{2}}} \delta m_{s \bar{s}^{2}}{ }^{2}\right) \\
& \times\left(1+D_{a^{2}}\left(a \Lambda_{Q C D}\right)^{2}+D_{\left(a m_{Q}\right)^{2}}\left(a m_{Q}\right)^{2}\right)
\end{aligned}
$$

with C and D fit parameters.

$B \rightarrow D^{*}, \mathrm{HPQCD}[2304.03137]$ - fit function

For $B \rightarrow D^{*}$ FFs, extrapolation is done using power series in $(w-1)$

$$
\begin{aligned}
F^{Y^{(s)}}(w)= & \sum_{n=0}^{10} a_{n}^{Y^{(s)}}(w-1)^{n} \mathcal{N}_{n}^{Y^{(s)}} \\
& \quad+\frac{g_{D^{*} D \pi}^{2}}{16 \pi^{2} f_{\pi}^{2}}\left(\log _{S U(3)}^{Y^{(s)}}-\log _{S U(3) \mathrm{phys}}^{Y}\right)
\end{aligned}
$$

The coefficients, a_{n}^{Y}, for each form factor take the form

$$
\left.\begin{array}{rl}
a_{n}^{Y^{(s)}}= & \alpha_{n}^{Y} \\
\times & \times[1
\end{array}+\sum_{j, k, l \neq 0}^{3} b_{n}^{Y, j k l} \Delta_{h}^{(j)}\left(\frac{a m_{c}^{\mathrm{val}}}{\pi}\right)^{2 k}\left(\frac{a m_{h}^{\mathrm{val}}}{\pi}\right)^{2 l}\right)
$$

