LeptonID challenges

<u>Kenta Uno</u> (KEK) Belle II physics week October 31th 2023

Introduction

Lepton ID is an important item for high precision measurement

- Require good performance \rightarrow less fake backgrounds ($\pi \rightarrow \ell, K \rightarrow \ell$)
- Require corrections (Data/MC) with small uncertainties
- Eg. Semi-Leptonic WG meeting in B2GM

<u> $B \rightarrow \tau \nu$ (M. Aversano)</u>

Systematic Uncertainties

<u> $B \rightarrow D^* \ell \nu$ (D.Domer)</u>

Systematics estimate for w[1, 1.05]

- Four systematics missing: fake rate, luminosity, continuum shape, track momentum scaling
- Will be added when rerunning with MC15rd
- Turning on all systematics yields same result as the sum

		$B \rightarrow D^* \ell \nu$				46th B	2GM		
all	9.20	12.10	13.90	12.70	12.40	11.80	11.20		
data_stat	6.63	9.40	11.20	10.06	9.68	9.01	8.68		
MC₋unc	3.99	5.66	6.74	6.05	5.83	5.42	5.22		
lifetime	0.30	0.30	0.30	0.30	0.30	0.30	0.30		
D_BR	0.70	0.70	0.70	0.70	0.70	0.70	0.70		
Dst₋BR	0.70	0.70	0.70	0.70	0.70	0.70	0.70		
nbb	1.50	1.50	1.50	1.50	1.50	1.50	1.50		
Form Factors	2.80	2.20	2.10	2.10	2.30	2.00	2.00		
XcEllNuWeight	2.30	2.60	2.30	2.30	2.60	3.50	2.20		
slowPions	2.60	2.60	2.60	2.50	2.60	2.60	2.70		
lepID eff	1.10	1.30	1.30	1.30	1.10	0.90	0.60		
tracking	0.70	0.70	0.70	0.70	0.70	0.70	0.70		
	bin1	bin2	bin3	bin4	bin5	bin6	bin7		
$d^2\Gamma/dwdcos_\ell$ rel. err [%]									

Lepton ID would give a large impact on several analysis

Let's discuss some items to improve the performance!

LID efficiency calibration

- Evaluate LID efficiency/fake rate using several channels
 Electron ID
- $ee \rightarrow (ee)ee$: momentum coverage is p < 2.5 GeV/c
- $J/\psi \rightarrow ee$: momentum coverage is 1.0 GeV/c
- $ee \rightarrow ee(\gamma)$: momentum coverage is 1.0 < p GeV/c

Muon ID

- $ee \rightarrow (ee)\mu\mu$: momentum coverage is p < 2.5 GeV/c
- $J/\psi \rightarrow \mu\mu$: momentum coverage is 1.0 GeV/c
- $ee \rightarrow \mu\mu$: momentum coverage is 1.0 < p GeV/c

$\underline{\pi \rightarrow \ell}, \underline{K \rightarrow \ell} \text{ mis-ID}$

- $K_S^0 \rightarrow \pi \pi$: momentum coverage is p < 1.0 GeV/c
- $ee \rightarrow \tau(1p)\tau(3p)$: momentum coverage is p < 1.0 GeV/c
- $D^{*+} \to (D^0 \to K^- \pi^+)\pi^+$ for $K \to \ell$ fake rates

Possible to cover full *p* range

Possible to cover full p range

Current corrections and unc

- Similar corrections in three calibration channels \rightarrow High reliability
- Calculate corrections and uncertainties in bins of (p, θ, q)
 - Comparable to or better than those at Belle

2023/10/30

Next step?

[™] my opinion

For high precision measurement, these items should be considered

- 1. Bin-by-bin correlations in Lepton ID
- 2. Lepton ID considering beam background
- 3. Effect of event multiplicity

 \rightarrow The correlations among the bins are not considered.

How to evaluate correlations

- Can we define a covariant matrix per systematic source, per channel?
- How to combine all these matrices into one?
- \rightarrow Your suggestion is very appreciated!!

2023/10/30

2. LID vs beam background

- Observe a degradation of LID efficiency due to beam background
- 5-10% degradation of *e*ID efficiency
- 10-15% degradation of eID efficiency
- Beam bkg gives an impact on detectors
- CDC: gain drop (dE/dx)
- ECL: pedestal shift
- KLM: multi-strip-hit?

time since injection [ms]

Expect larger beam background as the peak luminosity increases

- \rightarrow We cannot avoid such a degradation for the LID variables.
 - <u>It would be the limitation of LID performance</u>

Our approach for beam bkg

⁴For low momentum (p < 1.0 GeV/c), we rely on CDC info (dE/dx)

Better to utilize ECL info → more tolerance against beam bkg

Effect of corrections

Provide corrections in bins of (p, θ, q)

Assume no run-dependency

Observe run-dependency in LID efficiency

- It appears even though we use run-dependent MC
 - dE/dx calibration is not enough...

 \rightarrow Do you want corrections per eg. bucket number?

GNN-based Flavour Tagger

(Just for information):

The LID degradation gives impact on other performance..

	ε _{eff} [%] (only stat)
MC15ri_b	40.04 ± 0.07
MC15ri_up	38.93 ± 0.16
MC15rd	39.88 ± 0.07
(bucket36 only)	38.23 ± 0.38
Data	37.32 ± 0.34

- Results of MC15ri_up and MC15rd are closer to Data than MC15ri.
 - MC15rd (bucket35,36): $\varepsilon_{eff} \sim 38\%$

MC15rd vs MC15ri:

Reconstruction and beam-background condition is more realistic.

□ MC15ri_up vs MC15ri:

Decay model and BR of hadronic B-decay are modified.

GFIaT performance: consistent run-dependency with LID

- Good agreement of "Data/MC" b.t.w $ee \rightarrow \ell\ell, ee\ell\ell$ and J/ψ
- Some difference of "efficiency" b.t.w $ee \rightarrow \ell\ell, ee\ell\ell$ and J/ψ
- → Not urgent task, but worth to considering it in the future

Summary

Lepton ID is an important item for high precision measurement

- In the past few years, several improvements have been performed
- \rightarrow The performance is comparable to or better than that at Belle!
- **Current limitation**
- LID correlations
 - How to get one covariant matrix? Your suggestion is welcome.
- LID degradation due to beam background
 - Efficiency drop \rightarrow Need better PID to avoid losing statistics
 - Data/MC has run-dependency \rightarrow Need better calibration.
- Event multiplicity (eg. $ee \rightarrow ee\ell\ell \text{ vs } J/\psi \rightarrow \ell\ell$)
 - No obvious difference of "Data/MC" b.t.w channels for now
 - It might be worth to considering it in the future

Backup

J/ψ channel

Reconstruct J/ψ candidate from hadronic *B* decays

- Two tracks as originating from the IP
 - At least one track have a value of $\ell ID > 0.9$
- $2.8 < M_{\ell^+\ell^-} < 3.3 \text{ GeV}/c^2$
- Some requirements for bkg suppression (eg. $R_2 < 0.4$, matching ECL cluster) ^{1.0}
- → Perform a binned likelihood fit to $M_{\ell^+\ell^-}$ distribution Prepare suitable PDFs for sig/bkg

Extract the number of of J/ ψ candidates based on the fit result 2023/10/31

J/ψ channel

Tag-and-probe method is used to determine the LID efficiency

• Simultaneous fit is performed over the two "pass" and "fail" sets

• Calculate efficiencies for each (p, θ, q) bin

Escape into the beam pipe

- Suppress backgrounds ($ee \rightarrow qq, \tau\tau, ee\pi\pi, eeKK, \ell\ell$)-
 - Eg. Total visible energy, $p_{\rm T}$ balance

Tag-and-probe method is used to determine the LID efficiency

$ee \rightarrow (ee)\ell\ell$ (di-photon) channel

- Electron ID: a good agreement between data and MC15rd
- Muon ID: Some discrepancy between data and MC15rd
 - Low momentum \rightarrow CDC dE/dx calibration? Still under investigation

2023/10/31

ee $\rightarrow ee(\gamma)$: Bhabha channel

- Large events across full momentum range
 - High momentum: $ee \rightarrow ee$
 - Low momentum: $ee \rightarrow ee\gamma$

Event selection

- Use trigger requiring an ECL cluster (>2 GeV)
 - Probe the track, which is not used in the trigger
- Require the recoil mass M_{recoil}^2 to suppress backgrounds

Tag-and-probe method

 ρ : purities with *eeee*, *eeµµ*, µµ, $\tau\tau$ MC samples

In this B2GM, Phillip reported a recent progress in this channel. Please check his slide [Link]

ee $\rightarrow \mu\mu\gamma$: di-muon channel

• Large events across full momentum range

probe

- Clean environment
 - (Almost) no backgrounds
- Tag-and-probe method

 $N_{\rm probe}$

 N_{tag}

 ε_{data} =

Bkg subtraction (eg. $ee \rightarrow \pi\pi\gamma, KK\gamma$)

23

$ee \rightarrow \tau(1p)\tau(3p)$ channel

A clean sample of pions to measure pion misidentification probability

3prong

1 prong

- $\tau \rightarrow \pi \pi \pi \nu$ (3-prong) and $\tau \rightarrow \ell \nu \nu$ (1-prong)
 - 98% of 3-prong tracks: pions (High purity)
- **Event selection**
- Take 1+3 charged track events
- Suppress backgrounds: Thrust, visible energy..

$D^{*+} \rightarrow D^0 [\rightarrow K^- \pi^+] \pi^+$ channel

- Measure kaon-to-lepton misidentification probabilities
- D^{*+} mesons are produced in $e^+e^- \rightarrow c\bar{c}$ continuum events
 - Use all the data (on- and -ff-resonance data)

Figure 19: Fit to the M_{D^0} distribution in the $D^{*+} \to D^0 [\to K^- \pi^+] \pi^+$ channel without any probe selection criteria (top), with $P_e > 0.9$ for the kaon track (bottom left) and with $P_{\mu} > 0.9$ for the kaon track (bottom right).

Current assumptions for LID corrections

• LID corrections $(c_i = \frac{r_i^{\text{data}}}{r_i^{\text{MC}}} \rightarrow \text{data/MC eff., fake rate})$ binned in (p, θ, q) from several calibration channels.

3

- In each bin, if there's coverage, each channel provides a central value $\pm 1\sigma$ stat. $\pm 1\sigma$ (combined) syst.
 - Uncertainties can be asymmetric, depending on the source and the prescription.
 - Sources of systematic *per channel* are treated as fully independent, thus summed in quadrature.

Combination of LID corrections, and "distance" systematic unc.

• In each bin, c_i 's from available channels $k \in \{J/\psi \to \mu^+\mu^-, \mu^+\mu^-\gamma...\}$ are combined via a generalisation of the weighted average in presence of asymmetric errors (c.f. arXiv:physics/0406120).

• Syst. uncertainties of all combined channels are assumed fully independent in each bin.

Breakdown of sources of systematics

Channel	Source	Correlation [%] between p_{lab} bins	Correlation [%] between θ_{lab} bins	Correlation [%] between channels	Notes	
$J\!/\!\psi ightarrow e^+e^-$	1. Signal PDF parameters.	0	0	0	Each (p_{lab}, θ_{lab}) bin fitted individually.	
$e^+e^- \rightarrow (e^+e^-)e^+e^-$	1. $\pi(K) \rightarrow \ell$ data/MC correction.	100	100	0 (*)	(*) Neglected correlation to $K_{\rm S}^0 \to \pi^+\pi^-$, $e^+e^- \to \tau^{\pm}(1P)\tau^{\mp}(3P)$, $D^{*+} \to D^0(\to K^-\pi^+)\pi^+$	
$e \cdot e \rightarrow (e \cdot e) e \cdot e$	2. Background MC yield.	100	100	0 (*)	channels. (*) Neglected correlation to $e^+e^- \rightarrow e^+e^-(\gamma)$ channel.	
$e^+e^- ightarrow e^+e^-(\gamma)$	 Trigger selection on/off Background MC yield (purity factors). 	100 100	100 100	0 0 (*)	(*) Neglected correlation to to $e^+e^- \rightarrow (e^+e^-)e^+e^-$ channel.	
$J/\psi ightarrow \mu^+ \mu^-$	1. Signal PDF parameters.	0	0	0	Each (p_{lab}, θ_{lab}) bin fitted individually.	
$e^+e^- \rightarrow (e^+e^-)\mu^+\mu^-$	1. $\pi(K) \to \ell$ data/MC correction.	100	100	0 (*)	(*) Neglected correlation to $K_{\rm S}^0 \to \pi^+\pi^-$ $e^+e^- \to \tau^{\pm}(1P)\tau^{\mp}(3P),$ $D^{*+} \to D^0(\to K^-\pi^+)\pi^+$	
	2. Background MC yield.	100	100	0 (*)	(*) Neglected correlation to $e^+e^- \rightarrow \mu^+\mu^-\gamma$ channel.	
$e^+e^- ightarrow \mu^+\mu^-\gamma$	1. Background MC yield $(M_{\mu^+\mu^-\gamma} \text{ mismodelling})$	100	100	0	· · ·	
$K_{\rm S}^0 ightarrow \pi^+\pi^-$	1. Signal PDF parameters.	0	0	0	Each (p_{lab}, θ_{lab}) bin fitted individually.	
$e^+e^- \rightarrow \tau^{\pm}(1P)\tau^{\mp}(3P)$	1. anything $\rightarrow \pi$ data/MC corrections.	100	100	0 (*)	(*) Neglected correlation to e, μ eff. channels.	
$D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$	2. Higger eff. correction. 1. PDF parameters.	0	0	0	Each (p_{lab}, θ_{lab}) bin fitted individually.	
post-combination	distance to min/max (if > 3σ from weighted avg.)	?	?	-	Largest uncertainty in mid p_{lab} range ([1-2.5] GeV/c). May reduce w / iso binning.	

TABLE V. Description of the source of systematic uncertainty with assumptions on the correlations between bins and channels.

ECL image-based classification using Convolutional Neural Network

Improve the identification of low-momentum charged particles by exploiting the specific patterns in the spatial distribution of energy deposition in the ECL crystals using **Convolutional Neural Network** (CNN).

Examples of images for different particle species.

ECL-image: NxN neighbouring crystals around the entry point of the extrapolated track into the ECL.

Convolutional Neural Network - architecture

Data sample: Particle gun sample with flat $p \in [0.2, 0.6], [0.6, 1.0], [1.0, 1.4]$ GeV/c and $\theta \in [33, 131]^\circ$ spectra; +/- charged tracks for each particle hypothesis: π, e, μ, K, p

 $\pi \rightarrow \mu$ fake rates at fixed 90% μ efficiency for models using different sized images as an input.

Convolutional neural network architecture.