Experimental Developments of Inclusive Inputs

Lu Cao

(for the Belle & Belle II Collaboration)

Belle II Physics Week - Vcb Workshop

ор

Outline

Branching fractions

+

Observed kinematic shapes

2

Experimental ingredients

Observed kinematic shapes

Branching Fraction Measurements

- Experimental inputs are $\mathscr{B}(B \to X_c \ell \nu)$

or indirectly via $\mathscr{B}(B \to X_c \ell \nu) = \mathscr{B}(B)$

if measured as partial $\Delta \mathscr{B}$, need rescale to full phase space $\mathscr{B} = \Delta \mathscr{B} / \epsilon_{\Delta}$ $\epsilon_{\Delta} = \frac{\Delta \Gamma(e.g.E_{\ell}^{o} > 0.6 \text{ GeV})}{\Gamma}$

• As a normalisation factor, the total branching fraction is important for $|V_{cb}|$ extraction

$$\rightarrow X\ell\nu) - \mathscr{B}(B \rightarrow X_{u}\ell\nu)$$

Branching Fraction Measurements

- Experimental inputs are $\mathscr{B}(B \to X_c \ell \nu)$

or indirectly via $\mathscr{B}(B \to X_c \ell \nu) = \mathscr{B}(B)$

 $(\mathcal{D}(\mathbf{D} \setminus \mathbf{V}\mathcal{P}_{1}))$

if measured as partial $\Delta \mathscr{B}$, need resca

PDG status

VALUE (%)DOCUMENT IDTECNVALUE (%)DOCUMENT 10.84 ± 0.16 OUR EVALUATION See the ideogram below. [HFLAV] 10.65 ± 0.16 OUR EVALUATION [HFLAV] 10.49 ± 0.20 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below. 10.29 ± 0.19 OUR AVERAGE $10.34 \pm 0.04 \pm 0.26$ 1 LEES2017BBABR $10.18 \pm 0.03 \pm 0.24$ $11 EES$		$\mathcal{B}(D \to \Lambda \ell \nu)$		
10.84 \pm 0.16OUR EVALUATION See the ideogram below.[HFLAV]10.49 \pm 0.20OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below.10.65 \pm 0.16OUR EVALUATION [HFLAV]10.34 \pm 0.04 \pm 0.261 LEES2017B BABR10.18 \pm 0.03 \pm 0.241 LEES	,%)	DOCUMENT ID		TECN
10.49 \pm 0.20OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below.10.29 \pm 0.19OUR AVERAGE10.34 \pm 0.04 \pm 0.261 LEES2017BBABR10.18 \pm 0.03 \pm 0.241 LEES	± 0.16	OUR EVALUATION See the ideogram below.	[HFLAV]	
$10.34 \pm 0.04 \pm 0.26$ ¹ LEES 2017B BABR 10.18 ± 0.03 ± 0.24 11 LEES 11 LEES	± 0.20	OUR AVERAGE Error includes scale factor of 1.	.3. See the ideo	ogram below.
	$\pm 0.04 \pm 0.26$	26 ¹ LEES	2017B	BABR
$10.28 \pm 0.18 \pm 0.24$ 2007 BELL $10.18 \pm 0.03 \pm 0.24 \text{ BELL}$	$\pm 0.18 \pm 0.24$	24 ² URQUIJO	2007	BELL
$10.91 \pm 0.09 \pm 0.24$ 3 MAHMOOD 2004 CLEO $10.44 \pm 0.19 \pm 0.22$ 2 URQUIO	$\pm 0.09 \pm 0.24$	³ MAHMOOD	2004	CLEO
9.7 ±0.5 ±0.4 ⁴ ALBRECHT 1993H ARG	5 ± 0.4	⁴ ALBRECHT	1993H	ARG

• As a normalisation factor, the total branching fraction is important for $|V_{cb}|$ extraction

,

$$A \to X \ell \nu - \mathcal{B}(B \to X_u \ell \nu)$$

$$A \Gamma(e, g, E^B_e > 0)$$

ale to fi	to full	nhase	snace 0	3 =	$\Lambda \mathscr{B} \mathcal{E}$	<i>c</i> —	$\Delta \Gamma(e.g.E_{\ell}^{D} > 0)$		
		priase	Space of	0 —		ϵ_{Δ} –	Γ		

Branching Fraction Measurements

- Experimental inputs are $\mathscr{B}(B \to X_c \ell \nu)$

or indirectly via $\mathscr{B}(B \to X_c \ell \nu) = \mathscr{B}(B)$

• As a normalisation factor, the total branching fraction is important for $|V_{cb}|$ extraction

,

$$A \to X \ell \nu - \mathcal{B}(B \to X_u \ell \nu)$$

if measured as partial $\Delta \mathscr{B}$, need rescale to full phase space $\mathscr{B} = \Delta \mathscr{B} / \epsilon_{\Delta}$ $\epsilon_{\Delta} = \frac{\Delta \Gamma(e.g.E_{\ell}^{o} > 0.6 \text{ GeV})}{\Gamma}$

Tension exits among various measurements/conversions [see details in <u>JHEP 10 068 (2022)]</u>

Branching Fraction Measurement at Belle II

Belle II provided preliminary result on $\mathscr{B}(B \to X_c \ell \nu)$ with 62.8 fb⁻¹ dataset [2111.09405]

- **Untagged** strategy
- Select energetic lepton within [0.4, 2.5] GeV in centre-ofmass frame
- Addition selections applied to enhance signal (e.g. $M_{\rm miss}^2$, $\theta_{\rm miss}$, and total event charge)

Branching Fraction Measurement at Belle II

- - $\mathcal{B}(B \to X_c e \nu_e) = (9.97 \pm 0.03 (\text{stat}) \pm 0.38 (\text{sys}))\%$ e mode: μ mode: $\mathcal{B}(B \to X_c \mu \nu_\mu) = (9.47 \pm 0.05 (\text{stat}) \pm 0.45 (\text{sys}))\%$

	Relative uncertainty [%				
Contribution	Electron mode	Muon mode			
Tracking	0.69	0.69			
$N_{B\bar{B}}$	1.1	1.1			
Lepton ID corrections	1.64	2.33			
$f_0/f_+, B$ lifetime	1.2	1.2			
$B \to X_c \ell \nu_\ell$ branching fractions	2.65	2.15			
$B \to X_c \ell \nu_\ell$ form factors	1.11	1.11			
$B\bar{B}$ background model	0.24	0.34			
Off-resonance data model	0.34	2.91			
Sum	3.77	4.79			

Belle II provided preliminary result on $\mathscr{B}(B \to X_c \ell \nu)$ with 62.8 fb⁻¹ dataset [2111.09405]

combined: $\mathcal{B}(B \to X_c \ell \nu_\ell) = (9.75 \pm 0.03 (\text{stat}) \pm 0.47 (\text{sys}))\%$

weighted mean assuming fully correlated syst. unc., quote larger error from μ mode for the average

Results are not stat. limited but some important syst. uncertainties are due to only limited data were used for calibrations

Branching Fraction Measurement at Belle II

- - e mode: $\mathcal{B}(B \to X_c e \nu_e) = (9.97 \pm 0.03 (\text{stat}) \pm 0.38 (\text{sys}))\%$ μ mode: $\mathcal{B}(B \to X_c \mu \nu_\mu) = (9.47 \pm 0.05 (\text{stat}) \pm 0.45 (\text{sys}))\%$

- This untagged measurement will be updated to larger dataset and incorporating new knowledge for modelling, e.g. the recent Belle measurement of $B \to D^{(*)} \pi(\pi) \ell \nu$ [PRD 107, 092003 (2023)] The lepton energy spectrum/moments could be also provided (very limited resolutions for M_X , q^2)
- \bullet

• Belle II provided preliminary result on $\mathscr{B}(B \to X_c \ell \nu)$ with 62.8 fb⁻¹ dataset [2111.09405]

combined: $\mathcal{B}(B \to X_c \ell \nu_\ell) = (9.75 \pm 0.03 (\text{stat}) \pm 0.47 (\text{sys}))\%$

We will also measure branching fractions (total & differential) for semi-inclusive $B \to DX \ell \nu$

9

Measurements of Moments in $B \rightarrow X_c \ell \nu$

- derive HQE parameters, shape function and $|V_{cb}|$
- $< E_{\ell}^{n} >$: **BaBar**(2004, 2010), Belle(2007), CLEO(2001), DELPHI
- $< M_x^{2n} > :$ **BaBar**(2010), **Belle**(2007), **CDF**(2005), **CLEO**(2004), **DELPHI**(2006)
- $< q^{2n} >$: Belle (2021), Belle II (2023)

• Beyond normalisation \mathscr{B} , detailed shapes of key kinematic variables are needed to

• $B \rightarrow X_c \ell \nu$ hadronic mass moments $\langle M_X^2 - \overline{M}_D^2 \rangle$ (First Moments) $0.36 \pm 0.08 \text{ GeV}^2$ (S = 1.8) $\langle M_X^2 \rangle$ (First Moments) $4.156\pm0.029~ extbf{GeV}^2$ $\langle (M_X^2 - \overline{M}_X^2)^2 \rangle$ (Second Moments) $0.55\pm0.08~{ m GeV^4}$ $\langle (M_X^2 - \overline{M}_D^2)^2 \rangle$ (Second Moments) $0.64\pm0.19~{ m GeV^4}$ • $B ightarrow X_c \ell u$ lepton momentum moments $\mathsf{R}_0 \left(\Gamma_{E_l > 1.7 GeV} \ / \ \Gamma_{E_l > 1.5 GeV} \ ight)$ 0.6187 ± 0.0021 1.7797 ± 0.0018 (S = 1.8) R_1 ($\langle E_l \rangle_{E_l > 1.5 GeV}$) R_2 ($\langle E_l^2 - ar{E}_l^2 angle_{E_l > 1.5 GeV}$) $0.0308 \pm 0.0008~{ m GeV}^2$

 R_3 ($\langle E_l^3 - ar E_l^3
angle_{E_l > 1.5 GeV}$)

Binned

- 1. Extract signal yields for each kinematic region (e.g. E_{ℓ} threshold
- Unfold binned spectra with migration matrix, correct eff. & acc 2.
- Calculate moments via summing up bins 3.

Unbinned

	3.	Calibrate moments for distortion, acceptance and bias
С.	2.	Calculate moments with weighted events and correction
ds)	1.	Signal extraction based on event-wise probability

Also discussed by F. Bernlochner at Barolo

rections

Binned

- 1. Extract signal yields for each kinematic region (e.g. E_{ℓ} threshold
- 2. Unfold binned spectra with migration matrix, correct eff. & acc
- 3. Calculate moments via summing up bins

Unbinned

	3.	Calibrate moments for distortion, acceptance and
C.	2.	Calculate moments with weighted events and corre
ds)	1.	Signal extraction based on event-wise probability

rections

12

Binned

- Extract signal yields for each kinematic region (e.g. E_{ℓ} threshold 1.
- Unfold binned spectra with migration matrix, correct eff. & acc 2.
- Calculate moments via **summing up bins** 3.

Unbinned

ds)	1.	Signal extraction based on event-wise probability
C.	2.	Calculate moments with weighted events and correction
	3.	Calibrate moments for distortion, acceptance and bias

rections

Binned

- 1. Extract signal yields for each kinematic region (e.g. E_{ℓ} threshold
- 2. Unfold binned spectra with migration matrix, correct eff. & acc
- 3. Calculate moments via summing up bins

Unbinned

	3.	Calibrate moments for distortion, acceptance and
C.	2.	Calculate moments with weighted events and corre
ds)	1.	Signal extraction based on event-wise probability

rections nd bias

14

Binned

- Extract signal yields for each kinematic region (e.g. E_{ℓ} thresholds)
- **Unfold** binned spectra with **migration matrix**, correct eff. & acc. 2.
- Calculate moments via **summing up bins** 3.

Unbinned

Hadronic Mass Moments in $B \to X_c \ell \nu$

- Binned strategy applied on 140 fb⁻¹ of Belle data \bullet

$$\langle M_X^2 \rangle = \frac{\sum_i (M_X^2)_i x_i'}{\sum_i x_i'} \text{Unfolded } M_X^2 \text{ spect}$$

Belle: <u>PRD 75, 032005 (2007)</u>

Hadronic Mass Moments in $B \rightarrow X_c \ell \nu$

- Unbinned strategy applied for 210 fb⁻¹ data of BaBar \bullet
- 1st, 2nd central moments and 2nd raw moments measured \bullet with E_{ℓ} thresholds ranging in [0.8, 1.9] GeV

BaBar: PRD 81, 032003 (2010)

Hadronic Mass Moments in $B \rightarrow X_c \ell \nu$

- Unbinned strategy applied for 210 fb⁻¹ data of BaBar \bullet
- 1st, 2nd central moments and 2nd raw moments measured with E_{ℓ} thresholds ranging in [0.8, 1.9] GeV

BaBar: PRD 81, 032003 (2010)

- Measurement of q^2 moments with Belle II dataset of 6
- Hadronic tagging to reconstruct B_{tag}
- Kinematic fit constraining missing system improves resolution
- Includes the experimentally challenging q^2 region of [1.5, 2.5] GeV², ~77% of phase space

<u>PRD 107, 072002 (2023)</u>

52.8 fb⁻¹ ,
$$\ell'=e,\mu$$

- Background suppressed in hadronic mass M_X and converted to signal prob. on q^2
- First to fourth moments (m=1~4) & three central moments measured at a progression of cuts on q^2
- Spectra corrected for linear distortions, eff. & acc. & residual bias

$$\langle q^{2m} \rangle = rac{C_{\text{cal}} \cdot C_{\text{acc}}}{\sum_{i}^{\text{events}} w(q)}$$

- Background suppressed in hadronic mass M_X and converted to signal prob. on q^2
- First to fourth moments (m=1~4) & three central moments measured at a progression of cuts on q^2
- Spectra corrected for linear distortions, eff. & acc. & residual bias

$$\langle q^{2m} \rangle = rac{C_{\text{cal}} \cdot C_{\text{acc}}}{\sum_{i}^{\text{events}} w(q)}$$

$$(q_{reco}^2) = m \cdot \langle q_{gen, sel}^2 \rangle + c \qquad \forall \qquad q^2 > 4.0 \text{ GeV}^2/c^4$$

$$(q_{reco}^2) = m \cdot \langle q_{gen, sel}^2 \rangle + c \qquad \forall \qquad q^2 > 4.0 \text{ GeV}^2/c^4$$

$$(q_{reco}^2) = 1.5 \text{ GeV}^2/c^4$$

- Background suppressed in hadronic mass M_X and converted to signal prob. on q^2
- First to fourth moments (m=1~4) & three central moments measured at a progression of cuts on q^2
- Spectra corrected for linear distortions, eff. & acc. & residual bias

- Background suppressed in hadronic mass M_{χ} and converted to signal prob. on q^2
- First to fourth moments (m=1~4) & three central moments measured at a progression of cuts on q^2
- Spectra corrected for linear distortions, eff. & acc. & residual bias

$$\langle q^{2m} \rangle = rac{C_{\text{cal}} \cdot C_{\text{acc}}}{\sum_{i}^{\text{events}} w(q)}$$

PRD 107, 072002 (2023)

q^2 thresholds at (**1.5, 2.0, 2.5**) GeV² are not measured in Belle (2021)

measured & simulation are compared

Split Relative Systematic Uncertainties

Calibration (MC Statistics)	Calibration Curve (Statistical Uncertainty) Bias Correction (Statistical Uncertainty)
Calibration $(X_c \text{ Model})$	$\begin{aligned} \mathcal{B}(B \to D\ell\nu) \\ \mathcal{B}(B \to D^*\ell\nu) \\ \mathcal{B}(B \to D^{**}\ell\nu) \\ \text{Non-resonant } X_c \text{ Dropped} \\ \text{Non-resonant } X_c \text{ Replaced w/ } D_1', D_0^* \\ B \to D\ell\nu \text{ Form Factor} \\ B \to D^*\ell\nu \text{ Form Factor} \end{aligned}$
Calibration (Reconstruction)	PID Uncertainty N_{γ} Reweighted N_{tracks} Reweighted $E_{\text{miss}} - p_{\text{miss}}$ Reweighted Tracking Efficiency
Background	Spline Smooth Factor
Subtraction	Background Yield and Shape

What's next for moments?

• Measure all kin. moments simultaneously as a function of q^2 (E_1^B) thresholds in

$B \to X \ell \nu$: $q^2, E_1^B, M_X, \cos \theta_\ell$, combined variables $n_X^2(M_X^2, E_X), P_X^{\pm}(M_X, E_X)$

- Full experimental correlations will be derived => important for global analysis
- Only shape observation (drop tagging eff. calibration, separate from *B* measurement)

Summary

- New knowledge and techniques will be incorporated for future analyses (e.g. X_c modelling) \bullet
- Anything else? (e.g. sensitive regions, steps of thresholds,...) \bullet

Belle II will provide new results on branching fractions and moments of all kinematic variables

THANK YOU

of V_{cb} ?

Backup: Tagging vs. Untagging

Untagged

- Loose constraints on signal
- Very large statistics, but also very large background
- Efficiency $\epsilon \approx \mathcal{O}(100\%)$

Semileptonic tag

- Mid-range reconstruction efficiency
- Due to multiple neutrinos, less information about B_{tag}

Hadronic tag

- Cleaner sample
- Knowledge of p(B_{sig})
- Low tag-side efficiency $\epsilon \approx \mathcal{O}(0.1\%)$

Hadronic Tagging at Belle II

- Hadronic tagging with Full Event Interpretation algorithm [Comput Softw Big Sci 3, 6(2019)] to reconstruct Btag
 - Reconstruct *B* candidate with all combination of daughters
 - Calculate signal probability with multivariate classifiers

Hadronic FEI

- Over 200 BDTs to reconstruct $\mathcal{O}(10000)$ distinct decay chains
- Efficiency $\epsilon_{B^+} \approx 0.5 \%$, $\epsilon_{B^0} \approx 0.3 \%$ at ~15 % purity

Central moments

Hadronic Mass Moments in $B \to X_c \ell \nu$

BaBar: <u>PRD 81, 032003 (2010)</u>

															-
k	$p_{\ell,\min}^*$	$\langle m_X^k angle$	σ_{stat}	σ_{sys}	MC	simulation	extraction	back-	signal				$\Delta \langle M$	$\frac{2}{V}$ (GeV	$\overline{J^2}$
	[GeV/c]				statistics	related	method	groud	model	T* (O T)	0 7	0.0	\ <u>-</u>		
1	0.8	2.0906	± 0.0063	± 0.0166	0.0058	0.0099	0.0096	0.0047	0.0031	E_{\min}^{*} (GeV)	0.7	0.9	1.1	1.3	
	0.9	2.0890	± 0.0062	± 0.0158	0.0048	0.0088	0.0103	0.0045	0.0028	accordorry/folse lontong	0 0 2 2	0 0 0 2	0.012	0.007	
	1.0	2.0843	± 0.0061	± 0.0153	0.0044	0.0076	0.0109	0.0044	0.0027	secondary/lake leptons	0.033	0.023	0.013	0.007	
	1.1	2.0765	± 0.0063	± 0.0165	0.0044	0.0072	0.0127	0.0047	0.0026	combinatorial background	0.006	0.004	0.003	0.002	
	1.2	2.0671	± 0.0064	± 0.0160	0.0046	0.0073	0.0120	0.0045	0.0025	continuum	0 000	0 000	0 000	0 000	
	1.3	2.0622	± 0.0068	± 0.0168	0.0048	0.0073	0.0131	0.0050	0.0023	continuum	0.000	0.000	0.000	0.000	
	1.4	2.0566	± 0.0073	± 0.0183	0.0047	0.0069	0.0150	0.0054	0.0021	$B \to X_{\mu} \ell \nu$ background	0.004	0.004	0.004	0.004	
	1.5	2.0494	± 0.0081	± 0.0198	0.0036	0.0074	0.0168	0.0061	0.0019						
	1.6	2.0430	± 0.0092	± 0.0221	0.0038	0.0082	0.0187	0.0070	0.0018	$\mathcal{B}(D^{(*)}\ell u)$	0.008	0.007	0.007	0.007	
	1.7	2.0387	± 0.0109	± 0.0265	0.0047	0.0081	0.0232	0.0083	0.0015	$\mathcal{B}(D^{**}\ell_{\mathcal{V}})$	0.022	0.014	0.006	0 000	ł
	1.8	2.0370	± 0.0143	± 0.0337	0.0069	0.0097	0.0299	0.0098	0.0013	$\mathcal{O}(\mathcal{D} \setminus \mathcal{V})$	0.022	0.014	0.000	0.000	
	1.9	2.0388	± 0.0198	± 0.0413	0.0082	0.0123	0.0355	0.0150	0.0008	$\mathcal{B}((D^{(*)}\pi)_{\mathrm{non-res.}}\ell u)$	0.024	0.017	0.007	0.004	
2	0.8	4.429	± 0.029	± 0.070	0.027	0.047	0.030	0.018	0.008	$D^{(*)}\ell\nu$ form factors	0.013	0.013	0.012	0.011	I
	0.9	4.416	± 0.027	± 0.063	0.020	0.041	0.033	0.016	0.008		0.000	0.000	0.002	0.001	
	1.0	4.394	± 0.026	± 0.058	0.020	0.033	0.035	0.015	0.008	$D^{**}\ell\nu$ form factors	0.003	0.002	0.002	0.001	
	1.1	4.354	± 0.026	± 0.063	0.019	0.031	0.043	0.016	0.008	folding	0.015	0.015	0.015	0.015	
	1.2	4.308	± 0.026	± 0.058	0.019	0.030	0.039	0.015	0.007	uniolaing	0.010	0.010	0.010	0.010	
	1.3	4.281	± 0.027	± 0.061	0.020	0.029	0.044	0.016	0.007	binning	0.001	0.001	0.001	0.001	
	1.4	4.253	± 0.028	± 0.066	0.021	0.028	0.051	0.018	0.006	officiency	0 000	0.011	0.019	0 000	
	1.5	4.220	± 0.031	± 0.070	0.015	0.029	0.058	0.019	0.006	enciency	0.008	0.011	0.012	0.009	
	1.6	4.183	± 0.034	± 0.078	0.015	0.032	0.065	0.022	0.005	total	0.052	0 041	0 029	0 024	-
	1.7	4.158	± 0.040	± 0.094	0.019	0.032	0.082	0.026	0.004		0.002	0.041	0.025	0.024	
	1.8	4.145	± 0.051	± 0.120	0.026	0.036	0.107	0.031	0.004						
	1.9	4.136	± 0.069	± 0.142	0.031	0.046	0.122	0.048	0.002						
-	~ ~	~	1		~	<u> </u>		~ ~ ~	~ ~ ~						

Belle: PRD 75, 032005 (2007)

32