## Experimental Developments of Inclusive Inputs



## Outline

Branching fractions

## Description of Fermi <br> Shape function

 motionHigh-order correction

## Outline

## Experimental ingredients



## Branching Fraction Measurements

- As a normalisation factor, the total branching fraction is important for $\left|\mathrm{V}_{\mathrm{cb}}\right|$ extraction
- Experimental inputs are $\mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)$,
or indirectly via $\mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)=\mathscr{B}(B \rightarrow X \ell \nu)-\mathscr{B}\left(B \rightarrow X_{u} \ell \nu\right)$
if measured as partial $\Delta \mathscr{B}$, need rescale to full phase space $\mathscr{B}=\Delta \mathscr{B} / \epsilon_{\Delta} \quad \epsilon_{\Delta}=\frac{\Delta \Gamma\left(e . \mathrm{g} \cdot E_{\theta}^{B}>0.6 \mathrm{GeV}\right)}{\Gamma}$


## Branching Fraction Measurements

- As a normalisation factor, the total branching fraction is important for $\left|\mathrm{V}_{c b}\right|$ extraction
- Experimental inputs are $\mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)$,
or indirectly via $\mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)=\mathscr{B}(B \rightarrow X \ell \nu)-\mathscr{B}\left(B \rightarrow X_{u} \ell \nu\right)$
if measured as partial $\Delta \mathscr{B}$, need rescale to full phase space $\mathscr{B}=\Delta \mathscr{B} / \epsilon_{\Delta} \quad \epsilon_{\Delta}=\frac{\Delta \Gamma\left(\mathrm{e} . \mathrm{g} \cdot E_{E}^{B}>0.6 \mathrm{GeV}\right)}{\Gamma}$
- PDG status

| VALUE (\%) | $\mathscr{B}(B \rightarrow X \ell \nu)$ |  |  |
| :---: | :---: | :---: | :---: |
|  | DOCUMENTID |  | TECN |
| $\mathbf{1 0 . 8 4} \pm \mathbf{0 . 1 6}$ | OUR EVALUATION See the ideogram below. [1] | [HFLAV] |  |
| $\mathbf{1 0 . 4 9} \pm \mathbf{0 . 2 0}$ | OUR AVERAGE Error includes scale factor of 1.3. | . See the ideo | ram below. |
| $10.34 \pm 0.04 \pm 0.26$ | ${ }^{1}$ LEES | 2017B | BABR |
| $10.28 \pm 0.18 \pm 0.24$ | ${ }^{2}$ URQUIJO | 2007 | BELL |
| $10.91 \pm 0.09 \pm 0.24$ | ${ }^{3}$ MAHMOOD | 2004 | CLEO |
| $9.7 \pm 0.5 \pm 0.4$ | ${ }^{4}$ Albrecht | 1993H | ARG |


| $\mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| VALUE (\%) |  | DOCUMENTID |  | TECN |
| $\mathbf{1 0 . 6 5} \pm \mathbf{0 . 1 6}$ | OUR EVALUATION | [HFLAV] |  |  |
| $\mathbf{1 0 . 2 9} \pm \mathbf{0 . 1 9}$ | OUR AVERAGE |  |  |  |
| $10.18 \pm 0.03 \pm 0.24$ |  | ${ }^{1}$ LEES | 2017B | BABR |
| $10.44 \pm 0.19 \pm 0.22$ |  | $2{ }^{2}$ URQUIJO | 2007 | BELL |

## Branching Fraction Measurements

- As a normalisation factor, the total branching fraction is important for $\left|\mathrm{V}_{\mathrm{cb}}\right|$ extraction
- Experimental inputs are $\mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)$,
or indirectly via $\mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)=\mathscr{B}(B \rightarrow X \ell \nu)-\mathscr{B}\left(B \rightarrow X_{u} \ell \nu\right)$
if measured as partial $\Delta \mathscr{B}$, need rescale to full phase space $\mathscr{B}=\Delta \mathscr{B} / \epsilon_{\Delta} \quad \epsilon_{\Delta}=\frac{\Delta \Gamma\left(e . \mathrm{g} \cdot E_{\varepsilon}^{B}>0.6 \mathrm{GeV}\right)}{\Gamma}$
- Tension exits among various measurements/conversions [see details in JHEP 10068 (2022)]


## Branching Fraction Measurement at Belle II

- Belle II provided preliminary result on $\mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)$ with $62.8 \mathrm{fb}^{-1}$ dataset [2111.09405]

- Untagged strategy
- Select energetic lepton within [0.4, 2.5] GeV in centre-ofmass frame
- Addition selections applied to enhance signal (e.g. $M_{\text {miss }}^{2}$ $\theta_{\text {miss }}$, and total event charge)


## Branching Fraction Measurement at Belle II

- Belle Il provided preliminary result on $\mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)$ with $62.8 \mathrm{fb}^{-1}$ dataset [2111.09405]

$$
\begin{aligned}
\text { e mode: } & \mathcal{B}\left(B \rightarrow X_{c} e \nu_{e}\right)=(9.97 \pm 0.03 \text { (stat) } \pm 0.38(\text { sys })) \% \\
\mu \text { mode: } & \mathcal{B}\left(B \rightarrow X_{c} \mu \nu_{\mu}\right)=(9.47 \pm 0.05 \text { (stat) } \pm 0.45(\text { sys })) \%
\end{aligned}
$$

combined: $\mathcal{B}\left(B \rightarrow X_{c} \ell \nu_{\ell}\right)=(9.75 \pm 0.03($ stat $) \pm 0.47($ sys $)) \%$
weighted mean assuming
fully correlated syst. unc. quote larger error from $\mu$

| Contribution | Relative uncertainty [\%] <br> Electron mode Muon mode |  |
| :---: | :---: | :---: |$|$| Tracking | 0.69 |
| :---: | :---: |
| $N_{B \bar{B}}$ | 1.1 |
| Lepton ID corrections | 1.64 |
| $f_{0} / f_{+}, B$ lifetime | 1.2 |
| $B \rightarrow X_{c} \ell \nu_{\ell}$ branching fractions | 2.65 |
| $B \rightarrow X_{c} \ell \nu_{\ell}$ form factors | 1.11 |
| $B \bar{B}$ background model | 0.24 |
| Off-resonance data model | 0.34 |
| Sum | 3.77 |

Results are not stat. limited but some important syst. uncertainties are due to only limited data were used for calibrations

## Branching Fraction Measurement at Belle II

- Belle II provided preliminary result on $\mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)$ with $62.8 \mathrm{fb}^{-1}$ dataset [2111.09405]

$$
\begin{array}{cc}
\text { e mode: } & \mathcal{B}\left(B \rightarrow X_{c} e \nu_{e}\right)=(9.97 \pm 0.03(\text { stat }) \pm 0.38(\text { sys })) \% \\
\mu \text { mode: } & \mathcal{B}\left(B \rightarrow X_{c} \mu \nu_{\mu}\right)=(9.47 \pm 0.05(\text { stat }) \pm 0.45(\text { sys })) \% \\
\text { combined: } & \mathcal{B}\left(B \rightarrow X_{c} \ell \nu_{\ell}\right)=(9.75 \pm 0.03(\text { stat }) \pm 0.47(\text { sys })) \%
\end{array}
$$

- This untagged measurement will be updated to larger dataset and incorporating new knowledge for modelling, e.g. the recent Belle measurement of $B \rightarrow D^{(*)} \pi(\pi) \ell \nu$ [PRD 107, 092003 (2023)] The lepton energy spectrum/moments could be also provided (very limited resolutions for $M_{X}, q^{2}$ )
- We will also measure branching fractions (total \& differential) for semi-inclusive $B \rightarrow D X \ell \nu$


## Measurements of Moments in $B \rightarrow X_{c} \ell \nu$

- Beyond normalisation $\mathscr{B}$, detailed shapes of key kinematic variables are needed to derive HQE parameters, shape function and $\left|\mathrm{V}_{\mathrm{cb}}\right|$
- $\left\langle E_{\ell}^{n}\right\rangle: \operatorname{BaBar}(2004,2010)$, Belle(2007), CLEO(2001), DELPHI
- $\left\langle M_{x}^{2 n}\right\rangle$ : BaBar(2010), Belle(2007), CDF(2005), CLEO(2004), DELPHI(2006)
- $\left\langle q^{2 n}\right\rangle$ : Belle (2021), Belle II (2023)
- $B \rightarrow X_{c} \ell \nu$ HADRONIC MASS MOMENTS
$\left\langle M_{X}^{2}-\bar{M}_{D}^{2}\right\rangle$ (First Moments) $\quad 0.36 \pm 0.08 \mathrm{GeV}^{2} \quad(\mathrm{~S}=1.8)$
$\left\langle M_{X}^{2}\right\rangle$ (First Moments)
$\left\langle\left(M_{X}^{2}-\bar{M}_{X}^{2}\right)^{2}\right\rangle$ (Second Moments)
$\left\langle\left(M_{X}^{2}-\bar{M}_{D}^{2}\right)^{2}\right\rangle$ (Second Moments)
$4.156 \pm 0.029 \mathrm{GeV}^{2}$
$0.55 \pm 0.08 \mathrm{GeV}^{4}$
$0.64 \pm 0.19 \mathrm{GeV}^{4}$
- $B \rightarrow X_{c} \ell \nu$ LEPTON MOMENTUM MOMENTS

| $\mathrm{R}_{0}\left(\Gamma_{E_{l}>1.7 \mathrm{GeV}} / \Gamma_{E_{l}>1.5 \mathrm{GeV}}\right)$ | $0.6187 \pm 0.0021$ |
| :--- | :--- |
| $\mathrm{R}_{1}\left\langle\left\langle E_{l}\right\rangle_{E_{l}>1.5 \mathrm{GeV}}\right)$ | $1.7797 \pm 0.0018 \quad(\mathrm{~S}=1.8)$ |
| $\mathrm{R}_{2}\left\langle\left\langle E_{l}^{2}-\bar{E}_{l}^{\rangle_{2}}\right\rangle_{E_{l}>1.5 \mathrm{GeV}}\right)$ | $0.0308 \pm 0.0008 \mathrm{GeV}^{2}$ |
| $\mathrm{R}_{3}\left\langle\left\langle E_{l}^{3}-\bar{E}_{l}^{3}\right\rangle_{E_{l}>1.5 \mathrm{GeV}}\right)$ | $0.0021 \pm 0.0005 \mathrm{GeV}^{3}$ |

## Experimental Strategy

## Binned

1. Extract signal yields for each kinematic region (e.g. $E_{\ell}$ thresholds)
2. Unfold binned spectra with migration matrix, correct eff. \& acc.
3. Calculate moments via summing up bins

## Unbinned

1. Signal extraction based on event-wise probability
2. Calculate moments with weighted events and corrections
3. Calibrate moments for distortion, acceptance and bias

## Experimental Strategy

## Binned

1. Extract signal yields for each kinematic region (e.g. $E_{\ell}$ thresholds)
2. Unfold binned spectra with migration matrix, correct eff. \& acc.
3. Calculate moments via summing up bins

## Unbinned

1. Signal extraction based on event-wise probability
2. Calculate moments with weighted events and corrections
3. Calibrate moments for distortion, acceptance and bias

Example: measure $n^{\text {th }}$ moment $<E_{\ell}^{n}>$


## Experimental Strategy

## Binned

1. Extract signal yields for each kinematic region (e.g. $E_{\ell}$ thresholds)
2. Unfold binned spectra with migration matrix, correct eff. \& acc.
3. Calculate moments via summing up bins

## Unbinned

1. Signal extraction based on event-wise probability
2. Calculate moments with weighted events and corrections
3. Calibrate moments for distortion, acceptance and bias

## Experimental Strategy

## Binned

1. Extract signal yields for each kinematic region (e.g. $E_{\ell}$ thresholds)
2. Unfold binned spectra with migration matrix, correct eff. \& acc.
3. Calculate moments via summing up bins

## Unbinned

1. Signal extraction based on event-wise probability
2. Calculate moments with weighted events and corrections
3. Calibrate moments for distortion, acceptance and bias


## Experimental Strategy

## Binned

1. Extract signal yields for each kinematic region (e.g. $E_{\ell}$ thresholds)
2. Unfold binned spectra with migration matrix, correct eff. \& acc.
3. Calculate moments via summing up bins


## Unbinned

1. Signal extraction based on event-wise probability
2. Calculate moments with weighted events and corrections
3. Calibrate moments for distortion, acceptance and bias


## Hadronic Mass Moments in $B \rightarrow X_{c} \ell \nu$

- Binned strategy applied on $140 \mathrm{fb}^{-1}$ of Belle data

Belle: PRD 75, 032005 (2007)

- 1st, 2nd central moments and 2nd raw moments measured with $E_{\ell}$ thresholds ranging in $[0.7,1.9] \mathrm{GeV}$

$$
\left\langle M_{X}^{2}\right\rangle=\frac{\sum_{i}\left(M_{X}^{2}\right)_{i} x_{i}^{\prime}}{\sum_{i} x_{i}^{\prime}} \quad \text { Unfolded } M_{X}^{2} \text { spectrum }
$$







## Hadronic Mass Moments in $B \rightarrow X_{c} \ell \nu$

- Unbinned strategy applied for $210 \mathrm{fb}^{-1}$ data of BaBar

BaBar: PRD 81, 032003 (2010)

- 1st, 2nd central moments and 2nd raw moments measured with $E_{\ell}$ thresholds ranging in $[0.8,1.9] \mathrm{GeV}$

Calibration factors

$$
\left\langle m_{X}^{k}\right\rangle=\frac{\sum_{i=1}^{N_{\text {ev }}} w_{i}\left(m_{X}\right) m_{X, \text { calib }, i}^{k}}{\sum_{i}^{N_{\text {ev }}} w_{i}} \times \mathcal{C}_{\text {cal }}\left(p_{\ell}^{*}, k\right) \times \mathcal{C}_{\text {true }}\left(p_{\ell}^{*}, k\right)
$$




## Hadronic Mass Moments in $B \rightarrow X_{c} \ell \nu$

- Unbinned strategy applied for $210 \mathrm{fb}^{-1}$ data of BaBar

BaBar: PRD 81, 032003 (2010)

- 1st, 2nd central moments and 2nd raw moments measured with $E_{\ell}$ thresholds ranging in $[0.8,1.9] \mathrm{GeV}$








## Measurement of Moments $q^{2}$ at Belle II

- Measurement of $q^{2}$ moments with Belle II dataset of $62.8 \mathrm{fb}^{-1}, \ell=e, \mu$
- Hadronic tagging to reconstruct $\mathrm{B}_{\mathrm{tag}}$
- Kinematic fit constraining missing system improves resolution
- Includes the experimentally challenging $q^{2}$ region of $[1.5,2.5] \mathrm{GeV}^{2}, \sim 77 \%$ of phase space



## Measurement of Moments $q^{2}$ at Belle II

- Background suppressed in hadronic mass $M_{X}$ and converted to signal prob. on $q^{2}$
- First to fourth moments $(\mathbf{m}=1 \sim 4)$ \& three central moments measured at a progression of cuts on $q^{2}$
- Spectra corrected for linear distortions, eff. \& acc. \& residual bias

$$
\left\langle q^{2 m}\right\rangle=\frac{C_{\mathrm{cal}} \cdot C_{\mathrm{acc}}}{\sum_{i}^{\text {events }} w\left(q_{i}^{2}\right)} \times \sum_{i}^{\text {events }} w\left(q_{i}^{2}\right) \cdot q_{\mathrm{cal} i}^{2 m}
$$



binned => unbinned


## Measurement of Moments $q^{2}$ at Belle II

## PRD 107, 072002 (2023)

- Background suppressed in hadronic mass $M_{X}$ and converted to signal prob. on $q^{2}$
- First to fourth moments $(\mathbf{m}=1 \sim 4)$ \& three central moments measured at a progression of cuts on $q^{2}$
- Spectra corrected for linear distortions, eff. \& acc. \& residual bias

$$
\left\langle q^{2 m}\right\rangle=\frac{C_{\mathrm{cal}} \cdot C_{\mathrm{acc}}}{\sum_{i}^{\text {events }} w\left(q_{i}^{2}\right)} \times \sum_{i}^{\text {events }} w\left(q_{i}^{2}\right) \cdot q_{\mathrm{cal} i}^{2 m}
$$

```
- \langle\mp@subsup{q}{\mathrm{ reoo }}{2}}\rangle=m\cdot\langle\mp@subsup{q}{\mathrm{ gen, sel }}{2}\rangle+
O q}\mp@subsup{q}{}{2}>1.5\mp@subsup{\textrm{GeV}}{}{2}/\mp@subsup{c}{}{4
# q}\mp@subsup{q}{}{2}>2.0\mp@subsup{\textrm{GeV}}{}{2}/\mp@subsup{c}{}{4
\Delta q}\mp@subsup{q}{}{2}>2.5\mp@subsup{\textrm{GeV}}{}{2}/\mp@subsup{c}{}{4
\sharp q}\mp@subsup{q}{}{2}>3.0 GeV / /c
* q}\mp@subsup{q}{}{2}>3.5\mp@subsup{\textrm{GeV}}{}{2}/\mp@subsup{c}{}{4
```

$\nabla \quad q^{2}>4.0 \mathrm{GeV}^{2} / c^{4}$

* $q^{2}>6.5 \mathrm{GeV}^{2} / c^{4}$
- $q^{2}>4.5 \mathrm{GeV}^{2} / c^{4}$
$\nabla \quad q^{2}>7.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}$
※ $q^{2}>5.0 \mathrm{GeV}^{2} / c^{4}$
- $q^{2}>7.5 \mathrm{GeV}^{2} / c^{4}$
$\Delta \quad q^{2}>5.5 \mathrm{GeV}^{2} / \mathrm{c}^{4}$
\# $q^{2}>8.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}$



## Measurement of Moments $q^{2}$ at Belle II

- Background suppressed in hadronic mass $M_{X}$ and converted to signal prob. on $q^{2}$
- First to fourth moments $(\mathbf{m}=1 \sim 4)$ \& three central moments measured at a progression of cuts on $q^{2}$
- Spectra corrected for linear distortions, eff. \& acc. \& residual bias



## Measurement of Moments $q^{2}$ at Belle II

## PRD 107, 072002 (2023)

- Background suppressed in hadronic mass $M_{X}$ and converted to signal prob. on $q^{2}$
- First to fourth moments $(\mathbf{m}=1 \sim 4) \&$ three central moments measured at a progression of cuts on $q^{2}$
- Spectra corrected for linear distortions, eff. \& acc. \& residual bias

$$
\left\langle q^{2 m}\right\rangle=\frac{C_{\mathrm{cal}} \cdot C_{\mathrm{acc}}}{\sum_{i}^{\mathrm{events}} w\left(q_{i}^{2}\right.} \times \sum_{i}^{\text {events }} w\left(q_{i}^{2}\right) \cdot q_{\mathrm{cal} i}^{2 m}
$$





## Measurement of Moments $q^{2}$ at Belle II




PRD 107, 072002 (2023)
$q^{2}$ thresholds at $(\mathbf{1 . 5}, \mathbf{2 . 0}, \mathbf{2 . 5}) \mathrm{GeV}^{2}$ are not measured in Belle (2021)


measured \& simulation are compared

## Split Relative Systematic Uncertainties






Calibration Calibration Curve (Statistical Uncertainty)
(MC Statistics) Bias Correction (Statistical Uncertainty)

| Calibration | $\mathcal{B}(B \rightarrow D \ell \nu)$ |
| :--- | :--- |
| $\left(X_{c}\right.$ Model $)$ | $\mathcal{B}\left(B \rightarrow D^{*} \ell \nu\right)$ |
|  | $\mathcal{B}\left(B \rightarrow D^{* *} \ell \nu\right)$ |
|  | Non-resonant $X_{c}$ Dropped |
|  | Non-resonant $X_{c}$ Replaced w/ $D_{1}^{\prime}, D_{0}^{*}$ |
|  | $B \rightarrow D \ell \nu$ Form Factor |
|  | $B \rightarrow D^{*} \ell \nu$ Form Factor |


| Calibration | PID Uncertainty |
| :--- | :--- |
| (Reconstruction) | $N_{\gamma}$ Reweighted |

$N_{\text {tracks }}$ Reweighted
$E_{\text {miss }}-p_{\text {miss }}$ Reweighted
Tracking Efficiency

| Background | Spline Smooth Factor |
| :--- | :--- |
| Subtraction | Background Yield and Shape |

Other Nonclosure Bias

## What's next for moments?

- Measure all kin. moments simultaneously as a function of $q^{2}\left(E_{l}^{B}\right)$ thresholds in $B \rightarrow X \ell \nu: q^{2}, E_{l}^{B}, M_{X}, \cos \theta_{\ell}$, combined variables $n_{X}^{2}\left(M_{X}^{2}, E_{X}\right), P_{X}^{ \pm}\left(M_{X}, E_{X}\right)$
- Full experimental correlations will be derived => important for global analysis
- Only shape observation (drop tagging eff. calibration, separate from $\mathscr{B}$ measurement)


## Summary

- Belle II will provide new results on branching fractions and moments of all kinematic variables
- New knowledge and techniques will be incorporated for future analyses (e.g. $X_{c}$ modelling)
- Anything else? (e.g. sensitive regions, steps of thresholds,...)

Experimental ingredients


## THANK YOU



many different values
of $V_{c b}$ ?

## Backup: Tagging vs. Untagging

- Untagged
- Loose constraints on signal
- Very large statistics, but also very large background
- Efficiency $\epsilon \approx \mathcal{O}(100 \%)$
- Semileptonic tag
- Mid-range reconstruction efficiency
- Due to multiple neutrinos, less information about $\mathrm{B}_{\mathrm{tag}}$
- Hadronic tag
- Cleaner sample
- Knowledge of $p\left(B_{\text {sig }}\right)$
- Low tag-side efficiency $\epsilon \approx \mathcal{O}(0.1 \%)$


## Hadronic Tagging at Belle II

- Hadronic tagging with Full Event Interpretation algorithm [Comput Softw Big Sci 3, 6(2019)] to reconstruct $\mathrm{B}_{\mathrm{tag}}$
- Reconstruct $B$ candidate with all combination of daughters
- Calculate signal probability with multivariate classifiers




## Hadronic FEI

- Over 200 BDTs to reconstruct $\mathcal{O}(10000)$ distinct decay chains
- Efficiency $\epsilon_{B^{+}} \approx 0.5 \%, \epsilon_{B^{0}} \approx 0.3 \%$ at $\sim 15 \%$ purity


$$
M_{b c}=\sqrt{E_{\text {beam }}^{2} / 4-\left(p_{B_{\mathrm{tag}}}^{\mathrm{cm}}\right)^{2}}>5.27 \mathrm{GeV} / c^{2}
$$

## Measurement of Moments $q^{2}$ at Belle II

- Central moments





## Hadronic Mass Moments in $B \rightarrow X_{c} \ell \nu$

BaBar: PRD 81, 032003 (2010)
Belle: PRD 75, 032005 (2007)

| $k$ | $p_{\ell, \text { min }}^{*}$ <br> $[\mathrm{GeV} / c]$ | $\left\langle m_{X}^{k}\right\rangle$ | $\sigma_{\text {stat }}$ | $\sigma_{\text {sys }}$ | MC <br> statistics | simulation <br> related | extraction <br> method | back- <br> groud | signal <br> model |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.8 | 2.0906 | $\pm 0.0063$ | $\pm 0.0166$ | 0.0058 | 0.0099 | 0.0096 | 0.0047 | 0.0031 |
|  | 0.9 | 2.0890 | $\pm 0.0062$ | $\pm 0.0158$ | 0.0048 | 0.0088 | 0.0103 | 0.0045 | 0.0028 |
|  | 1.0 | 2.0843 | $\pm 0.0061$ | $\pm 0.0153$ | 0.0044 | 0.0076 | 0.0109 | 0.0044 | 0.0027 |
|  | 1.1 | 2.0765 | $\pm 0.0063$ | $\pm 0.0165$ | 0.0044 | 0.0072 | 0.0127 | 0.0047 | 0.0026 |
|  | 1.2 | 2.0671 | $\pm 0.0064$ | $\pm 0.0160$ | 0.0046 | 0.0073 | 0.0120 | 0.0045 | 0.0025 |
|  | 1.3 | 2.0622 | $\pm 0.0068$ | $\pm 0.0168$ | 0.0048 | 0.0073 | 0.0131 | 0.0050 | 0.0023 |
|  | 1.4 | 2.0566 | $\pm 0.0073$ | $\pm 0.0183$ | 0.0047 | 0.0069 | 0.0150 | 0.0054 | 0.0021 |
|  | 1.5 | 2.0494 | $\pm 0.0081$ | $\pm 0.0198$ | 0.0036 | 0.0074 | 0.0168 | 0.0061 | 0.0019 |
|  | 1.6 | 2.0430 | $\pm 0.0092$ | $\pm 0.0221$ | 0.0038 | 0.0082 | 0.0187 | 0.0070 | 0.0018 |
|  | 1.7 | 2.0387 | $\pm 0.0109$ | $\pm 0.0265$ | 0.0047 | 0.0081 | 0.0232 | 0.0083 | 0.0015 |
|  | 1.8 | 2.0370 | $\pm 0.0143$ | $\pm 0.0337$ | 0.0069 | 0.0097 | 0.0299 | 0.0098 | 0.0013 |
|  | 1.9 | 2.0388 | $\pm 0.0198$ | $\pm 0.0413$ | 0.0082 | 0.0123 | 0.0355 | 0.0150 | 0.0008 |
| 2 | 0.8 | 4.429 | $\pm 0.029$ | $\pm 0.070$ | 0.027 | 0.047 | 0.030 | 0.018 | 0.008 |
|  | 0.9 | 4.416 | $\pm 0.027$ | $\pm 0.063$ | 0.020 | 0.041 | 0.033 | 0.016 | 0.008 |
|  | 1.0 | 4.394 | $\pm 0.026$ | $\pm 0.058$ | 0.020 | 0.033 | 0.035 | 0.015 | 0.008 |
|  | 1.1 | 4.354 | $\pm 0.026$ | $\pm 0.063$ | 0.019 | 0.031 | 0.043 | 0.016 | 0.008 |
|  | 1.2 | 4.308 | $\pm 0.026$ | $\pm 0.058$ | 0.019 | 0.030 | 0.039 | 0.015 | 0.007 |
|  | 1.3 | 4.281 | $\pm 0.027$ | $\pm 0.061$ | 0.020 | 0.029 | 0.044 | 0.016 | 0.007 |
|  | 1.4 | 4.253 | $\pm 0.028$ | $\pm 0.066$ | 0.021 | 0.028 | 0.051 | 0.018 | 0.006 |
|  | 1.5 | 4.220 | $\pm 0.031$ | $\pm 0.070$ | 0.015 | 0.029 | 0.058 | 0.019 | 0.006 |
|  | 1.6 | 4.183 | $\pm 0.034$ | $\pm 0.078$ | 0.015 | 0.032 | 0.065 | 0.022 | 0.005 |
|  | 1.7 | 4.158 | $\pm 0.040$ | $\pm 0.094$ | 0.019 | 0.032 | 0.082 | 0.026 | 0.004 |
|  | 1.8 | 4.145 | $\pm 0.051$ | $\pm 0.120$ | 0.026 | 0.036 | 0.107 | 0.031 | 0.004 |
|  | 1.9 | 4.136 | $\pm 0.069$ | $\pm 0.142$ | 0.031 | 0.046 | 0.122 | 0.048 | 0.002 |


|  |  |  | $\Delta\left\langle M_{X}^{2}\right\rangle\left(\mathrm{GeV}^{2} / c^{4}\right)$ |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $E_{\text {min }}^{*}(\mathrm{GeV})$ | 0.7 | 0.9 | 1.1 | 1.3 | 1.5 |
| secondary $/$ fake leptons | 0.033 | 0.023 | 0.013 | 0.007 | 0.004 |
| combinatorial background | 0.006 | 0.004 | 0.003 | 0.002 | 0.002 |
| continuum | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $B \rightarrow X_{u} \ell \nu$ background | 0.004 | 0.004 | 0.004 | 0.004 | 0.006 |
| $\mathcal{B}\left(D^{(*)} \ell \nu\right)$ | 0.008 | 0.007 | 0.007 | 0.007 | 0.006 |
| $\mathcal{B}\left(D^{* *} \ell \nu\right)$ | 0.022 | 0.014 | 0.006 | 0.000 | 0.000 |
| $\mathcal{B}\left(\left(D^{(*)} \pi\right)_{\text {non-res. }} \ell \nu\right)$ | 0.024 | 0.017 | 0.007 | 0.004 | 0.004 |
| $D^{(*)} \ell \nu$ form factors | 0.013 | 0.013 | 0.012 | 0.011 | 0.010 |
| $D^{* *} \ell \nu$ form factors | 0.003 | 0.002 | 0.002 | 0.001 | 0.001 |
| unfolding | 0.015 | 0.015 | 0.015 | 0.015 | 0.015 |
| binning | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
| efficiency | 0.008 | 0.011 | 0.012 | 0.009 | 0.008 |
| total | 0.052 | 0.041 | 0.029 | 0.024 | 0.022 |

