

Inclusive $|V_{ub}|/|V_{cb}|$

Based on: Belle Preprint 2023-17 KEK Preprint 2023-30 Submitting to arXiv and PRD today

Marcel Hohmann, Phillip Urquijo The University of Melbourne mhohmann@student.unimelb.edu.au

Belle II Physics Week KEK 01/11/2023

- Long standing discrepancy between inclusive and exclusive $|V_{ub}|$ and $|V_{cb}|$ determinations
- $|V_{ub}|/|V_{cb}|$ extracted from *B* decays in good agreement:

$$|V_{ub}|/|V_{cb}|_{inc} = (9.8 \pm 0.6) \times 10^{-2}$$

$$|V_{ub}|/|V_{cb}|_{exc} = (9.4 \pm 0.5) \times 10^{-2}$$

$$|V_{ub}|/|V_{cb}|_{\Lambda_b,B_s} = (8.4 \pm 0.7) \times 10^{-2}$$

• Better precision and better understanding of possible biases needed

Experimental Uncertainties in $\overline{B} \to \pi/\rho/\omega \ell \overline{\nu}$

• 2013 Belle $\overline{B} \to \pi/\rho/\omega \ell \overline{\nu}$:

[Phys.Rev.D 88 (2013) 3, 032005]

Source of uncertainty	Assigne	d systemati	c uncertainty	v for $\bar{B} \to X_u$	$\ell^- \bar{\nu}_\ell$ decays
X_u	π^+	π^0	ρ^+	$ ho^0$	$\omega(3\pi)$
Detector Simulation:					
Track reconstruction	0.35	-	0.35	0.7	0.7
π^0 reconstruction	-	2.0	2.0	-	2.0
Lepton identification	1.0	1.0	1.0	1.0	1.0
Kaon veto	0.9	-	1.0	2.0	2.0
Continuum description	1.0	0.5	0.5	0.7	0.0
X_u cross-feed	0.9	-	5.0	2.4	-
Tag calibration	4.5	4.2	4.5	4.2	4.2
Combined	4.9	4.8	7.2	5.4	5.2
Form Factor Shapes:	1.1	1.9	1.7	1.3	3.8
Total systematic error	5.0	5.1	7.4	5.6	6.4
Stat Uncertainty:	6.0%	10%	5.5%	8.4%	15%

Calibrates to $\overline{B} \to D^{(*)} \ell \overline{\nu}$

Experimental Uncertainties in $\overline{B} \to \pi/\rho/\omega \ell \overline{\nu}$

• 2013 Belle $\overline{B} \to \pi/\rho/\omega \ell \overline{\nu}$:

[Phys.Rev.D 88 (2013) 3, 032005]

Source of uncertainty	Assigne	d systemati	c uncertainty	v for $\bar{B} \to X_u$	$\ell^- \bar{\nu}_\ell$ decays
X_u	π^+	π^0	$ ho^+$	$ ho^0$	$\omega(3\pi)$
Detector Simulation:					
Track reconstruction	0.35	-	0.35	0.7	0.7
π^0 reconstruction	-	2.0	2.0	-	2.0
Lepton identification	1.0	1.0	1.0	1.0	1.0
Kaon veto	0.9	-	1.0	2.0	2.0
Continuum description	1.0	0.5	0.5	0.7	0.0
X_u cross-feed	0.9	-	5.0	2.4	-
Tag calibration	4.5	4.2	4.5	4.2	4.2
Combined	4.9	4.8	7.2	5.4	5.2
Form Factor Shapes:	1.1	1.9	1.7	1.3	3.8
Total systematic error	5.0	5.1	7.4	5.6	6.4
Stat Uncertainty:	6.0%	10%	5.5%	8.4%	15%

Calibrates to $\overline{B} \to D^{(*)} \ell \overline{\nu}$

Provocative comment:

Why bake in large normalization uncertainties when we can directly measure $\frac{\mathcal{B}(\overline{B} \to \pi \ell \overline{\nu})}{\mathcal{B}(\overline{B} \to D^{(*)} \ell \overline{\nu})}$ and $|V_{ub}|/|V_{cb}|$?

Marcel Hohmann

Experimental Uncertainties in Inclusive $B \rightarrow X_u \ell \nu$

- Best sensitivity in hadronic tagged measurements – allows for measuring away from shape function regime.
- Usually dominated by $\overline{B} \to X_u \ell \overline{\nu}$ modelling.
- Expect to (partially) cancel some sub-leading tagging and lepton ID uncertainties by taking a ratio measurement.
- Tagged measurements are implicitly ratio measurements why not make it explicit?

2021 Belle Inclusive |Vub|:

 $M_X: q^2$ Fit

Data Statistics	4.4%
$B \rightarrow X_u \ell \nu$ Exclusive Modelling	2.5%
$B \to X_u \ell \nu$ Inclusive Modelling	8.8%
$B \to X_c \ell \nu$ Modelling	1.6%
Lepton Identification	1.9%
Tagging	3.6%
Other	2.6%

[Phys.Rev.D 104 (2021) 1, 012008]

Theory uncertainties in $\Gamma(B \rightarrow X_u \ell \nu)$

- Heavy-to-heavy and heavy-to-light OPEs in $\frac{1}{m_h}$, α_s
 - shared dependence on m_b and non perturbative parameters μ_{π}, μ_G, ρ_D , ρ_{LS}
- Naïvely expect at least partial uncertainty cancellation in the ratio
- $|V_{ub}|$ world averages:

BLNP: ±5.7%		GGOU: ±3.9%	
Statistics	1.6%	Statistics	1.3%
Detector Effects	1.7%	Detector Effects	1.6%
$B \to X_u \ell \nu$ Modelling	1.8%	$B \to X_u \ell \nu$ Modelling	1.7%
$B \to X_c \ell \nu$ Modelling	1.0%	$B \to X_c \ell \nu$ Modelling	0.9%
Heavy quark params.	2.8%	Heavy quark params.	1 . 8 %
SF functional form	0.3%	Higher order corrections	1.5%
Sub-leading SF	0.8%	q^2 tail Modelling	1.3%
Matching scale	3.8%	Func. form dist. function	0.1%
Weak Annihilation	-0.7%	Weak Annihilation	-1.1%
[HFLAV, Phys.Rev.D 10	07 (2023) 5	, 052008]	

$$\begin{split} \Gamma = &|V_{cb}|^2 \frac{G_F^2 m_b^5(\mu)}{192\pi^3} |\eta_{\rm EW}|^2 \times \\ & \left[z_0^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} z_0^{(1)}(r) + \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 z_0^{(2)}(r) + \cdots \right. \\ & + \frac{\mu_\pi^2}{m_b^2} \left(z_2^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} z_2^{(1)}(r) + \cdots \right) \right. \\ & + \frac{\mu_G^2}{m_b^2} \left(y_2^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} y_2^{(1)}(r) + \cdots \right) \\ & + \frac{\rho_{\rm LS}^3}{m_b^3} \left(z_3^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} z_3^{(1)}(r) + \cdots \right) \\ & + \frac{\rho_{\rm LS}^3}{m_b^3} \left(y_3^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} y_3^{(1)}(r) + \cdots \right) + \ldots \right] \\ & \left[\text{PDG Review '21} \right] \end{split}$$

$$\begin{split} \Gamma_{tot} &= |V_{ub}|^2 G_F^2 m_b^5(\mu) / 192 \pi^3 \left(1 + 2 \frac{\alpha}{\pi} \ln \frac{M_Z}{m_b} \right) \left[1 + C_F \frac{\alpha_s}{\pi} \left(\frac{25}{8} - \frac{\pi^2}{2} + \frac{20}{3} \frac{\mu}{m_b} + 3 \frac{\mu^2}{m_b^2} - \frac{77}{9} \frac{\mu^3}{m_b^3} \right) \\ &+ C_F \beta_0 \left(\frac{\alpha_s}{\pi} \right)^2 \left(\frac{1009}{384} - \frac{77\pi^2}{288} - 2\zeta_3 + \frac{10(3\lambda + 8)\mu}{9m_b} + \frac{(6\lambda + 13)\mu^2}{4m_b^2} - \frac{77(\lambda + 2)\mu^3}{18m_b^3} \right) \\ &- \frac{\mu_\pi^2(\mu)}{2m_b^2} - \frac{3\mu_G^2(\mu)}{2m_b^2} + \left(77 + 48 \ln \frac{\mu_{\rm WA}^2}{m_b^2} \right) \frac{\rho_D^3(\mu)}{6m_b^3} \\ &+ \frac{3\rho_{LS}^3(\mu)}{2m_b^3} + C_{\rm WA} B_{\rm WA}(\mu_{\rm WA}) \right] \\ & \left[\text{GGOU} - \text{JHEP 10} \left(2007 \right) 058 \right] \end{split}$$

Measurement Strategy

- Precise $B \to X_u \ell \nu$ extraction complicated by large $B \to X_c \ell \nu$ background.
 - $\frac{\mathcal{B}(B \to X_c \ell \nu)}{\mathcal{B}(B \to X_u \ell \nu)} \approx 50$ with similar experimental signature.
- Focus on reducing model dependence in $B \to X_u \ell \nu$ and $B \to X_c \ell \nu$.
- High inclusivity $B \rightarrow X_u \ell \nu$ extraction, $p_\ell^B > 1.0 \text{ GeV/c} (f_u \sim 86\%)$.
- Reconstruct $\overline{B} \to X \ell \overline{\nu}$ with hadronic tagging (FEI).
- The challenge is $B \to X_u \ell \nu$, simple treatment of $B \to X_c \ell \nu$.

$B \rightarrow X_u \ell \nu$ Selection

- Simple cut-based selection to suppress $B \to X_c \ell \nu$ background
 - loose to reduce bias towards resonances and $B \rightarrow X_u \ell \nu$ sculpting
 - $|m_{\nu}^2| \approx |m_{Miss}^2| < 0.43 \ GeV^2$
 - Charged slow pion veto.
 - Kaon veto: even $N_{K^{\pm}} + N_{K^0_S}$
- $B \rightarrow X_u \ell \nu$ Efficiency:

Decay Channel	B^{+} [%]	$B^0 \ [\%]$
$\overline{B} \to \pi \ell \overline{\nu}$	0.152(3)	0.082(2)
$\overline{B} \to \rho \ell \overline{\nu}$	0.147(2)	0.082(1)
$\overline{B} \to \omega \ell \overline{\nu}$	0.127(2)	-
$\overline{B} \to \eta \ell \overline{\nu}$	0.127(4)	-
$\overline{B} \to \eta' \ell \overline{\nu}$	0.097(4)	-
$\overline{B} \to x_u \ell \overline{\nu}$	0.103(1)	0.054(1)

• Still a large dependence on E_{ℓ}^{B} - can improve on this in Belle II.

$B \to X_u \ell \nu$ Sample

- Belle *Preliminary* $\times 10^3$ $\times 10^4$ Data excess at high p_{ℓ}^{B} , q^{2} . Data 🛉 1.0 $\overline{B} \to X_u \ell \overline{\nu}$ Events / (0.05 [GeV]) $\overline{B} \to D\ell\overline{\nu}$ Repeated indications seen by Belle, $[GeV^2]$ $\overline{B} \to D^* \ell \overline{\nu}$ $\overline{B} \to D^{**} \ell \overline{\nu}$ BaBar, and $B \rightarrow X_c \ell \nu$ moments $\overline{B} \to D^{**}_{\operatorname{Gap}} \ell \overline{\nu}$ $X_c \tau (\to \ell \overline{\nu} \nu) \overline{\nu}$ 0. analysis. (1 $\overline{B} \to (\text{fake } \ell)$ Bernlocher, et al. 2014 [Eur.Phys.J.C $\overline{B} \to (\text{sec. } \ell)$ Events / 0.4 = u, d, s, c)74 6, 2914], Syst //// BaBar 2012 [PRD 86, 032004] Belle 2021 [PRD 104, 012008] 0.0 Belle 2021 [PRD 104, 112011] Ratio 8⁰ R Ratio 8°0 Ratio Reason unclear, $B \rightarrow D^{**} \ell \nu$ 1.50 2.002.75 1.00 1.251.752.25 2.500 $E_{\ell}^{B_{\mathrm{sig}}}$ [GeV]
- Mismodelling might cause bias ٠ in inclusive $|V_{uh}|$ determinations.

modelling?

Belle Preliminary

10

15

 $q^2 \, [\text{GeV}^2]$

20

Data 🛉

 $\overline{B} \to X_n \ell \overline{\nu}$

 $\overline{B} \to D\ell\overline{\nu}$

 $\overline{B} \to D^* \ell \overline{\nu}$

 $\overline{B} \to D^{**} \ell \overline{\nu}$

 $\overline{B} \to D_{\text{Gap}}^{**} \ell \overline{\nu}$

 $\overline{B} \to (\text{fake } \ell)$

 $\overline{B} \to (\text{sec. } \ell)$

Syst ////.

30

 $q\bar{q} (q = u, d, s, c)$

25

 $\overline{B} \to X_c \tau (\to \ell \overline{\nu} \nu) \overline{\nu}$

$B \to X_u \ell \nu$ Sample

- Data excess at high p_{ℓ}^{B} , q^{2} .
- Repeated indications seen by Belle, BaBar, and $B \rightarrow X_c \ell \nu$ moments analysis. Bernlocher, et al. 2014 [Eur.Phys.J.C 74 6, 2914], BaBar 2012 [PRD 86, 032004] Belle 2021 [PRD 104, 012008] Belle 2021 [PRD 104, 112011]
- Reason unclear, $B \rightarrow D^{**} \ell \nu$ modelling?
- Mismodelling might cause bias in inclusive $|V_{ub}|$ determinations.
- Kaon vetoed sample \rightarrow
- Consistent Data-MC disagreement
 - Expected if issue is semi-leptonic decay modelling.
 - Use for modelling corrections.

$B \to X_{\nu} \ell \nu$ Extraction

- Continuum MC calibrated to off-resonance sample.
- Secondary and fake lepton MC calibrated to high • M_X , low p_ℓ^B control region.
- Extract $B \to X_{\mu} \ell \nu$ yield from 2D fit to $q^2: p_{\ell}^B$. ٠
 - Equal frequency $B \rightarrow X_c \ell \nu$.
 - Final broad bins average over shape function region - reduce dependence on $B \to X_{\mu} \ell \nu$ modelling.
- Reduce dependence on $B \rightarrow X_c \ell \nu$ modeling -٠ take template from kaon vetoed sample as:

Data and MC yields in kaon vetoed sample

Pull

Marcel Hohmann

2

$$T_{i} = \frac{\tau_{i}}{\tau_{i}} (N_{i,K}^{Data} - a\eta_{i,K}^{B \to X_{u}\ell\nu} - \eta_{i,K}^{q\overline{q}} - \eta_{i,K}^{Sec.Fakes})$$

Transfer factor taken from MC

- Maximum likelihood fit floating proportion of • $B \to X_{\nu} \ell \nu / B \to X_{c} \ell \nu.$
 - $\chi^2/dof = 14.6/15$

 $E_{\ell}^{B_{\rm sig}}$ [GeV]

11

$B \rightarrow X_c \ell \nu$ Extraction

- Extract $B \to X_c \ell \nu$ yield via simple background subtraction in total $B \to X \ell \nu$ sample.
- Normalize $B \to X_u \ell \nu$ by fit result.
- Continuum scaled by calibration in offresonance sample.
- Secondary and fake lepton component fixed after calibration to high M_X , low p_ℓ^B control region.

• Split sample into electron and muon modes, subtract background and extrapolate to full phase-space:

$$\frac{\mathcal{B}(\overline{B} \to X_c e \,\overline{\nu})}{\mathcal{B}(\overline{B} \to X_c \mu \,\overline{\nu})} = 1.003 \, (1 \pm 0.5\%_{stat} \pm 2.4\%_{syst})$$

Ratio of Partial Branching Fractions

• Take ratio as:

$$\frac{\Delta \mathcal{B}(B \to X_u \ell \nu; p_\ell^B > 1.0 \ GeV/c)}{\Delta \mathcal{B}(B \to X_c \ell \nu; p_\ell^B > 1.0 \ GeV/c)} = \frac{\epsilon^{B \to X_c \ell \nu}}{\epsilon^{B \to X_u \ell \nu}} \frac{N^{B \to X_u \ell \nu}}{N^{B \to X_c \ell \nu}}$$

 $545000 \pm 1400 \pm 2300$

Belle *Preliminary*

$$\frac{\Delta \mathcal{B}\left(B \to X_u \ell \nu; \ p_\ell^B > 1.0 \ GeV/c\right)}{\Delta \mathcal{B}\left(B \to X_c \ell \nu; \ p_\ell^B > 1.0 \ GeV/c\right)} = 1.96\left(1 \pm 8.4\%_{stat} \pm 7.9\%_{syst}\right) \times 10^{-2}$$

• Final Step: Extract
$$\frac{|V_{ub}|}{|V_{cb}|} = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\Delta \mathcal{B}(B \to X_c \ell \nu)}} \frac{\Delta \Gamma(B \to X_c \ell \nu)}{\Delta \Gamma(B \to X_u \ell \nu)}}{No \text{ public predictions of ratio of partial rates}}$$

\mathbf{D} , \mathbf{V} , $\mathbf{0}$, - N / - -l - II: \sim - 1

	Systematics -	$B \rightarrow$	$ X_u \ell v \text{ Modelling} \qquad B^- \begin{pmatrix} b & V_{ub} & V_$
	•	%	
_	Stat. Error (Data)	8.4	
-	$\mathcal{B}(\overline{B} \to \pi/\eta/\rho/\omega/\eta'\ell\overline{\nu})$	0.2	• Nominal $B \rightarrow X \ell_{Y} MC \cdot DEN [\text{IHEP } 06(1000) 017]$
	$\mathcal{FF}(\overline{B} \to \pi/n/\rho/\omega/n'\ell\overline{\nu})$	0.3	$A = A_u v \text{inc. Drive [STEP 00(1999), 017]}$
	$BF(B \to x_u \ell \overline{\nu})$	0.6	NLO calculation + non-perturbative QCD inputs. \smile
	Hybrid Model (BLNP)	0.5	• Hadronised with JETSET/Pythia $(m_x > 2m_{\pi})$
	DFN $(m_{b}^{\text{KN}}, a^{\text{KN}})$	5.0	
	$N_{a \to s\overline{s}}$	1.3	
-	$\mathcal{B}(\overline{B} \to D\ell\overline{\nu})$	0.1	• Resonances $(B \rightarrow (\pi, \rho, \omega, \eta, \eta') \ell \nu)$ added ad-hoc via hybrid
	$\mathcal{B}(\overline{B} \to D^* \ell \overline{\nu})$	0.8	approach [PRD 41, 1496].
	$\mathcal{B}(\overline{B} \to D^{**} \ell \overline{\nu})$	0.3	PDG 2020 branching fractions and up-to-date models
	$\mathcal{B}(\overline{B} \to D^{(*)}nl\overline{\nu})$	0.2	
5	$\mathcal{B}(\overline{B} \to D^{(*)}\pi\pi/\overline{\nu})$	0.2	$\Delta B_{ijk}^{inc.} = \Delta B_{ijk}^{cc.} + w_{ijk} \cdot \Delta B_{ijk}^{inc.}$
na	$E(\overline{B} \to D/\overline{\mu})$	0.2	
μ.	$FF(\overline{B} \to D^* \ell \overline{\nu})$	0.2	
il.	$FF(\overline{B} \rightarrow D^{**}\ell\overline{u})$	0.3	${}_{\times 10^4} \qquad \qquad B^+ \rightarrow X^0_u \ell^+ \nu \qquad \qquad {}_{\times 10^4} \qquad \qquad B^+ \rightarrow X^0_u \ell^+ \nu \qquad \qquad {}_{\times 10^4} \qquad \qquad B^+ \rightarrow X^0_u \ell^+ \nu$
re	Sec Fakes Composition	3.8	6 Hybrid: Inclusive + Resonances Hybrid: Inclusive 20
Ω	In-situ a^2 Calibration	2.8	5 2.0 2.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<u> </u>	/ID Efficiency	0.1	
<u> </u>	/ID Fake Bate	0.3	
Δ	$K\pi$ ID Efficiency	1.1	
	$K\pi$ ID Fake Rate	0.7	
	$K^0_{\rm S}$ Efficiency	0.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\pi_{\rm slow}$ Efficiency	< 0.1	
	Tracking	0.1	$\frac{\text{Decay Channel}}{\overline{B}} \xrightarrow{V} \underbrace{K}_{\overline{a}} \xrightarrow{V} \underbrace{K} \underbrace{K}_{\overline{a}} \xrightarrow{V} \underbrace{K} \underbrace{K} \xrightarrow{V} \underbrace{K} \underbrace{K} \xrightarrow{V} \underbrace{K} \underbrace{K} \xrightarrow{V} \underbrace{K} \xrightarrow{V} \underbrace{K} \xrightarrow{V} \underbrace{K} \underbrace{K} \xrightarrow{V} \underbrace{K} V$
	Continuum Calibration	0.4	$\frac{B \to X_u \ell \nu}{\overline{B} \to \pi \ell \overline{\nu}} = \frac{0.078 \pm 0.031}{0.078 \pm 0.003} = 0.150 \pm 0.006$
	N_{BB}	< 0.1	$\overline{B} \to \rho \ell \overline{\nu}$ 0.158 ± 0.011 0.294 ± 0.021
	$f_{+/0}$	< 0.1	$\overline{B} ightarrow \omega \ell \overline{ u}$ 0.119 ± 0.009 -
	Stat. Error (MC)	2.8	$\overline{B} \to \eta \ell \overline{\nu} \qquad 0.039 \pm 0.005 -$
	Total Syst.	7.9	$\begin{array}{ccc} B \rightarrow \eta' \ell \overline{\nu} & 0.023 \pm 0.008 & - \\ Marcel Hohmann & \overline{B} \rightarrow r' \ell \overline{\nu} & 1.70 \pm 0.32 & 1.60 \pm 0.30 & 14 \end{array}$
=			

 ℓ^-

Systematics - $B \rightarrow X_u \ell \nu$ Modelling

	•	%	
-	Stat. Error (Data)	8.4	
	$\mathcal{B}(\overline{B} \to \pi/\eta/\rho/\omega/\eta'\ell\overline{\nu})$	0.2	•
	$\mathcal{FF}(\overline{B} \to \pi/\eta/\rho/\omega/\eta'\ell\overline{\nu})$	0.3	
	$BF(B \to x_u \ell \overline{\nu})$	0.6	
	Hybrid Model (BLNP)	0.5	
	DFN $(m_b^{\text{KN}}, a^{\text{KN}})$	5.0	
	$N_{g \to s\overline{s}}$	1.3	•
	$\mathcal{B}(\overline{B} \to D\ell\overline{\nu})$	0.1	
	$\mathcal{B}(\overline{B} \to D^* \ell \overline{\nu})$	0.8	
	$\mathcal{B}(\overline{B} \to D^{**}\ell\overline{\nu})$	0.3	
>	$\mathcal{B}(\overline{B} \to D^{(*)}\eta \ell \overline{\nu})$	0.2	•
ЛE	$\mathcal{B}(\overline{B} \to D^{(*)}\pi\pi\ell\overline{\nu})$	0.2	
Ш	$\mathcal{FF}(\overline{B} \to D\ell\overline{\nu})$	0.2	
E	$\mathcal{FF}(\overline{B} \to D^* \ell \overline{\nu})$	0.9	
:])	$\mathcal{FF}(\overline{B} \to D^{**}\ell\overline{\nu})$	0.4	
Č	Sec.Fakes. Composition	3.8	
L L	In-situ q^2 Calibration	2.8	•
	ℓID Efficiency	0.1	
m	ℓ ID Fake Rate	0.3	
ىت	$K\pi$ ID Efficiency	1.1	
	$K\pi$ ID Fake Rate	0.7	
	K_S^0 Efficiency	0.2	
	$\pi_{\rm slow}$ Efficiency	< 0.1	
	Tracking	0.1	
	Continuum Calibration	0.4	
	N_{BB}	< 0.1	
	$f_{+/0}$	< 0.1	
	Stat. Error (MC)	2.8	
	Total Syst.	7.9	

Small exposure to resonances in hybrid modelling composition.

Dominant systematic due to $m_b^{KN} = 4.66 \pm 0.04 \text{ GeV}$, $a^{KN} = 1.3 \pm 0.5$ uncertainty [PRD 73:073008].

 Switch DFN -> BLNP [PRD 72, 073006] for inclusive. Shape difference mostly at endpoint – averaged over in broad bins!

K production in X_u via gluon splitting – vary relative contribution $\pm 25\%$.

Systematics - $B \rightarrow X_c \ell \nu$ Modelling

•	%
Stat. Error (Data)	8.4
$\mathcal{B}(\overline{B} \to \pi/\eta/\rho/\omega/\eta'\ell\overline{\nu})$	0.2
$\mathcal{FF}(\overline{B} \to \pi/\eta/\rho/\omega/\eta'\ell\overline{\nu})$	0.3
$BF(B \to x_u \ell \overline{\nu})$	0.6
Hybrid Model (BLNP)	0.5
DFN $(m_b^{\text{KN}}, a^{\text{KN}})$	5.0
$N_{g \to s\overline{s}}$	1.3
$\mathcal{B}(\overline{B} \to D\ell\overline{\nu})$	0.1
$\mathcal{B}(\overline{B} \to D^* \ell \overline{\nu})$	0.8
$\mathcal{B}(\overline{B} \to D^{**}\ell\overline{\nu})$	0.3
$\mathcal{B}(\overline{B} \to D^{(*)}\eta \ell \overline{\nu})$	0.2
$\mathcal{B}(\overline{B} \to D^{(*)}\pi\pi \ell \overline{\nu})$	0.2
$\mathcal{FF}(\overline{B} \to D\ell\overline{\nu})$	0.2
$\mathcal{FF}(\overline{B} \to D^* \ell \overline{\nu})$	0.9
$\mathcal{FF}(\overline{B} \to D^{**}\ell\overline{\nu})$	0.4
Sec.Fakes. Composition	3.8
In-situ q^2 Calibration	2.8
ℓID Efficiency	0.1
ℓ ID Fake Rate	0.3
$K\pi$ ID Efficiency	1.1
$K\pi$ ID Fake Rate	0.7
K_S^0 Efficiency	0.2
$\pi_{\rm slow}$ Efficiency	< 0.1
Tracking	0.1
Continuum Calibration	0.4
N_{BB}	< 0.1
$f_{+/0}$	< 0.1
Stat. Error (MC)	2.8
Total Syst.	7.9
	Stat. Error (Data) $\mathcal{B}(\overline{B} \to \pi/\eta/\rho/\omega/\eta' \ell \overline{\nu})$ $\mathcal{FF}(\overline{B} \to \pi/\eta/\rho/\omega/\eta' \ell \overline{\nu})$ $\mathcal{BF}(B \to x_u \ell \overline{\nu})$ Hybrid Model (BLNP)DFN (m_b^{KN}, a^{KN}) $N_{g \to s\overline{s}}$ $\mathcal{B}(\overline{B} \to D\ell \overline{\nu})$ $\mathcal{B}(\overline{B} \to D^* \ell \overline{\nu})$ $\mathcal{B}(\overline{B} \to D^{**} \ell \overline{\nu})$ $\mathcal{B}(\overline{B} \to D^{(*)} \eta \ell \overline{\nu})$ $\mathcal{B}(\overline{B} \to D^{(*)} \pi \pi \ell \overline{\nu})$ $\mathcal{FF}(\overline{B} \to D^* \ell \overline{\nu})$ $\mathcal{FF}(\overline{B} \to D^* \ell \overline{\nu})$ $\mathcal{FF}(\overline{B} \to D^{**} \ell \overline{\nu})$ Sec.Fakes. CompositionIn-situ q^2 Calibration ℓ ID Efficiency ℓ ID Fake Rate $K\pi$ ID Efficiency $\mathcal{K}\pi$ ID Fake Rate K_S^0 Efficiency π_{slow} Efficiency π_{slow} Efficiency π_{BB} $f_{+/0}$ Stat. Error (MC)Total Syst.

- $B \rightarrow D^{(*)} \ell \nu$: latest BGL form factors [PRD 93, 0.32006, PRD 103, 073005] and PDG2020 branching fractions
- $B \rightarrow D^{**} \ell \nu$, $D^{**} \in (D_1, D_2, D_0, D'_1)$: D^{**} masses and widths updated to PDG2020. LLSW for form factors.

~10% gap between inclusive and sum of exclusive measurements.

• Filled with "best guess" $B \to D^{(*)} \eta \ell \nu, B \to D^{(*)} \pi \pi \ell \nu$

Decay Channel	$B^+ [\times 10^{-3}]$	$B^0 \ [imes 10^{-3}]$	
$\overline{B} \to X_c \ell \overline{\nu}$	108 ± 4	101 ± 4	
$\overline{B} \to D\ell\overline{\nu}$	23.5 ± 1	23.1 ± 1	
$\overline{B} ightarrow D^* \ell \overline{ u}$	56.6 ± 2	50.5 ± 1	
$\overline{B} \to D_0 (\to D\pi) \ell \overline{\nu}$	4.2 ± 0.8	3.9 ± 0.7	
$\overline{B} o D_1' (o D^* \pi) \ell \overline{\nu}$	4.2 ± 0.8	3.9 ± 0.8	
$\overline{B} \to D_1(\to D^*\pi) \ell \overline{\nu}$	4.2 ± 0.3	3.9 ± 0.3	\frown
$\overline{B} \to D_1 (\to D\pi\pi) \ell \overline{\nu}$	2.4 ± 0.1	2.3 ± 0.9	
$\overline{B} o D_2(o D^*\pi) \ell \overline{\nu}$	1.2 ± 0.1	1.1 ± 0.1	
$\overline{B} o D_2 (o D\pi) \ell \overline{ u}$	1.8 ± 0.2	1.7 ± 0.2	Via intermediate
$\overline{B} \to D\pi \pi \ell \overline{\nu}$	0.6 ± 0.6	0.6 ± 0.6	broad $D^{**} \rightarrow Better$
$\overline{B} ightarrow D^* \pi \pi \ell \overline{ u}$	2.2 ± 1.0	2.0 ± 1.0	description than 4/5
$\overline{B} \to D\eta \ell \overline{\nu}$	3.6 ± 2.0	4.0 ± 2.0	body phase space
$\overline{B} \to D^* \eta \ell \overline{\nu}$	3.6 ± 2.0	4.0 ± 2.0	model.

Systematics - Other

	•	%
-	Stat. Error (Data)	8.4
-	$\mathcal{B}(\overline{B} \to \pi/\eta/\rho/\omega/\eta'\ell\overline{\nu})$	0.2
	$\mathcal{FF}(\overline{B} \to \pi/\eta/\rho/\omega/\eta'\ell\overline{\nu})$	0.3
	$BF(B \to x_u \ell \overline{\nu})$	0.6
	Hybrid Model (BLNP)	0.5
	DFN $(m_b^{\text{KN}}, a^{\text{KN}})$	5.0
	$N_{g \to s\overline{s}}$	1.3
	$\mathcal{B}(\overline{B} \to D\ell\overline{\nu})$	0.1
	$\mathcal{B}(\overline{B} \to D^* \ell \overline{\nu})$	0.8
	$\mathcal{B}(\overline{B} \to D^{**} \ell \overline{\nu})$	0.3
~	$\mathcal{B}(\overline{B} \to D^{(*)}\eta \ell \overline{\nu})$	0.2
L E	$\mathcal{B}(\overline{B} \to D^{(*)}\pi\pi \ell \overline{\nu})$	0.2
nă	$\mathcal{FF}(\overline{B} \to D\ell\overline{\nu})$	0.2
Ē	$\mathcal{FF}(\overline{B} \to D^*\ell\overline{\nu})$	0.9
<u> </u>	$\mathcal{FF}(\overline{B} \to D^{**}\ell\overline{\nu})$	0.4
2 Z	Sec.Fakes. Composition	3.8
4	In-situ q^2 Calibration	2.8
<u> </u>	ℓID Efficiency	0.1
å	ℓ ID Fake Rate	0.3
	$K\pi$ ID Efficiency	1.1
	$K\pi$ ID Fake Rate	0.7
	K_S^0 Efficiency	0.2
	$\pi_{\rm slow}$ Efficiency	< 0.1
_	Tracking	0.1
	Continuum Calibration	0.4
	N_{BB}	< 0.1
	$f_{+/0}$	< 0.1
	Stat. Error (MC)	2.8
	Total Syst.	7.9

- Vary secondary lepton, fake lepton, and
 B → Xτ(→ ℓνν)ν relative contributions
 - Combined normalisation constrained by fits to high mass, low lepton momentum control regions.
- Detector effects and particle identification well understood from control mode samples.

Naïve $|V_{ub}|/|V_{cb}|$ Extraction

- Missing consistent theory evaluations of the ratio of partial rates.
- Naïve conversion:

$$\frac{|V_{ub}|}{|V_{cb}|} = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\Delta \mathcal{B}(B \to X_c \ell \nu)}} \frac{\Delta \Gamma(B \to X_c \ell \nu)}{\Delta \Gamma(B \to X_u \ell \nu)}$$

 $1.96(1 \pm 8.4\% \pm 7.9\%) \times 10^{-2}$

 $\begin{array}{l} \Delta\Gamma(B \rightarrow X_u \ell \nu) : 58.5^{+2.7}_{-2.3} \ ps^{-1} \ (\text{GGOU}) \\ \Delta\Gamma(B \rightarrow X_c \ell \nu) : \ 29.9 \pm 1.2 \ ps^{-1} \ (\text{Kin } + \text{phase space correction factor from MC}) \end{array}$

Naïve $|V_{ub}|/|V_{cb}|$ Extraction

- Missing consistent theory evaluations of the ratio of partial rates.
- Naïve conversion:

Background Subtracted Spectra

- Normalise to nominal fit results and project onto p_ℓ^B , q^2 no additional selections.
- Subtract backgrounds, correct $B \rightarrow X_c \ell \nu$ shape from kaon vetoed sample.

Unfolded Ratio

- Unfold $B \to X_u \ell \nu, B \to X_c \ell \nu$ yields via Singular Value Decomposition method of [NIMA 372:469(1996)]
- Tune regularisation parameter to minimise model bias.
- Take ratio and correct for efficiency to form differential ratios.

Future – Belle II $|V_{ub}|/|V_{cb}|$

- We extracted 0^{th} order ratio, can a simultaneous analysis of higher moments of $\overline{B} \rightarrow X_u \ell \overline{\nu}$ and $B \rightarrow X_c \ell \overline{\nu}$ analysis be useful?
- How useful/feasible is it to include such ratio of moments in global fits to $\overline{B} \to X_c \ell \overline{\nu}$, and $B \to X_s \gamma$ (and $\overline{B} \to X_u \ell \overline{\nu}$) spectra?

Future – Belle II $|V_{ub}|/|V_{cb}|$

- We extracted 0^{th} order ratio, can a simultaneous analysis of higher moments of $\overline{B} \rightarrow X_u \ell \overline{\nu}$ and $B \rightarrow X_c \ell \overline{\nu}$ analysis be useful?
- How useful/feasible is it to include such ratio of moments in global fits to $\overline{B} \to X_c \ell \overline{\nu}$, and $B \to X_s \gamma$ (and $B \to X_u \ell \overline{\nu}$) spectra?
- Requirements for improved inclusive $|V_{ub}|$ determinations:
- Reduce $\overline{B} \to X_u \ell \overline{\nu}$ model dependence
 - Improve flatness of selections in kinematic variables - ongoing Belle II effort using machine learning with flatness penalty terms
- Kaon vetoes are extremely powerful need to be able to reliably veto $K_{\rm L}$
- Constrain 'weak annihilation' contribution
- Improve/tune fragmentation of X_u system in PYTHIA

Belle $\overline{B} \to X_s \gamma$ [PRD.91.052004]

Mode category	Data	Default MC
$K\pi$ without π^0	4.2 ± 0.4	10.3 (+17)
$K\pi$ with π^0	2.1 ± 0.2	5.4 (+19)
$K2\pi$ without π^0	14.5 ± 0.5	12.9 (-3.1)
$K2\pi$ with π^0	24.0 ± 0.7	15.2 (-12)
$K3\pi$ without π^0	8.3 ± 0.8	5.9 (-3.3)
$K3\pi$ with π^0	16.1 ± 1.8	15.7 (-0.2)
$K4\pi$	11.1 ± 2.8	12.3 (+0.4)
$K2\pi^0$	14.4 ± 3.5	14.4 (-0.0)
Κη	3.2 ± 0.8	4.9 (+2.3)
3K	2.0 ± 0.3	3.0 (+3.3)

Excl.	$(3.78 \pm 0.23_{\text{stat}} \pm 0.16_{\text{syst}} \pm$	$\pm 0.14_{\text{theo}}) \times 10^{-3}$
Incl.	$(3.88 \pm 0.20_{\text{stat}} \pm 0.31_{\text{syst}} \pm$	$\pm 0.09_{\text{theo}}) \times 10^{-3}$
Ratio	0.97 ± 0.12 ($ ho = 0.11$)	compatible with the world average within 1.2σ

See also first simultaneous determination of inclusive and exclusive $|V_{ub}|$ [arXiv:2303.17309]

- Ratio measurements cancel some experimental systematic uncertainties expect also some cancellation on theory side
- Data-driven $X_c \ell v$ modelling corrections can bypass issues with gap modelling
- Tagged measurements are implicitly ratio measurements why not make it explicit?
- Preliminary result on $\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\Delta \mathcal{B}(B \to X_c \ell \nu)}$ at Belle. Theory predictions of ratio of partial rates needed to extract $|V_{ub}|/|V_{cb}|$.
- Naïve $|V_{ub}|/|V_{cb}|$ extraction in good agreement with world averages.
- Submitting to arXiv and PRD today

