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Global analysis

Are data and theory
predictions aligned?

How do we combine
the various datasets?

2/18



Traditional approach
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New data are welcome
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The semileptonic fit

mkin
b mc(2GeV) µ2

π ρ3
D µg(mb) ρLS BRc`ν 103|Vcb|

4.573 1.092 0.477 0.185 0.306 −0.130 10.66 42.16
0.012 0.008 0.056 0.031 0.050 0.092 0.15 0.51

• Constraints from FLAG Nf = 2 + 1 + 1: mb = (mb) = 4.198(12) GeV and
mc = (mc) = 0.988(7) GeV

• No new experimental input wrt to the one in 1411.6560

• The central value of Vcb is stable

• Without constraints on mb, we extract m̄b(m̄b) = 4.210(22) GeV

[MB, Capdevila, Gambino, ’21]
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The semileptonic fit

mkin
b mc(2GeV) µ2

π ρ3
D µg(mb) ρLS BRc`ν 103|Vcb|

4.573 1.092 0.477 0.185 0.306 −0.130 10.66 42.16
0.012 0.008 0.056 0.031 0.050 0.092 0.15 0.51

• Constraints from FLAG Nf = 2 + 1 + 1: mb = (mb) = 4.198(12) GeV and
mc = (mc) = 0.988(7) GeV

• No new experimental input wrt to the one in 1411.6560

• The central value of Vcb is stable

• Without constraints on mb, we extract m̄b(m̄b) = 4.210(22) GeV

Vcb = 42.16(32)exp(30)th(25)Γ · 10−3

[MB, Capdevila, Gambino, ’21]
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New approach: q2 moments

Idea: use q2 spectrum to full use RPI relations in HQE
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• First proposal
[Fael, Mannel, Vos, ’18]

〈(q2)n〉 =

∫
q2min

dq2(q2)n dΓ
dq2∫

q2min
dq2 dΓ

dq2

• Vcb extraction from Belle and Belle II data
[Bernlochner et al, ’22]

Vcb = (41.79± 0.57)× 10−3

• Value for ρD in tension with previous
determinations
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Where do we stand?

1. What else is needed on the theory side?

⇒ Are QED corrections currently taken into account for the moments and the
branching fractions?

⇒ Are there any observables for which we need to compute higher order in αs or
1/m?

2. We have two methods that yield very compatible results for Vcb

⇒ Can they be combined in a global fit?
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What about QED Effect?

Why do we care about QED Effects?

• We want to match the theory description with the experimental measurements
that are always affected by photon emissions

• The MC PHOTOS accounts for QED effects, reporting results which can be
compared with the non-radiative theory predictions

• PHOTOS knows only about real emission and obtains the virtual part by
normalisation

dΓ

dzdx
= F (0)(ωvirtual + ωreal)⇒

∫
dx(ωvirtual + ωreal) = 1

Are virtual corrections under control?
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The inclusive case

• If wrt QCD the hadronic and leptonic system are separated, QED corrections mix
them

⇒ Defining fully inclusive observables is harder

⇒ Analogy with experiments is essential

• The OPE is still valid for the total decay width

• At the differential level, this is generally not true

⇒ Large contributions factorise wrt to tree-level

⇒ Useful to go beyond NLO
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Two calculation approaches
1. Splitting Functions(

dΓ

dy

)(1)

=
α

2π
L̄b/e

∫ 1−ρ

y

dx

x
P (0)
ee

( y
x

) (dΓ

dx

)(0)

• Correction vanishes for the inclusive branching fraction
• Suitable for evaluating O(α2) and O(α/mn

b ) corrections

2. Full O(α) corrections

• Access all corrections, not only the one that factorise

• Real corrections are computationally expensive

⇒ Cuba library employed to carry out the 4-body integration

⇒ Phase space splitting used to reduce the size of the integrands

log(m2
b/m

2
e) plus distribution
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Leading contributions
1. Collinear logs: captured by splitting functions

∼ αe
π

log2

(
m2
b

m2
e

)

2. Threshold effects or Coulomb terms

∼ 4παe
9

3. Wilson Coefficient

∼ αe
π

[
log

(
M2
Z

µ2
− 11

6

)]
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Lepton Energy spectrum

• We compute bins in the lepton energy using the full O(α) calculation

• We compare them to the results given by the splitting functions

• The difference the two calculations for the lepton energy spectrum and obtain a
full analytic formula for the radiative corrections

⇒ Relatively small, easy-to-use formula to obtain branching fractions, lepton energy
moments w/o cuts
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4.2 Numerical results

In Figure 5 we display the complete O(↵) corrections (green curve and band) and the
corresponding LL approximation (red curve) computed in Section 2. The green curve
corresponds to an interpolation obtained by considering 40 different bins that cover the full
physical region of y 2 [2

p
r, 1�⇢+r], while the green band reflects the associated numerical

integration uncertainties. Relative to the total O(↵) corrections these uncertainties typically
amount to around 1%, except close to the zero of the depicted green curve. For the purpose
of this comparison, we have factored the Wilson coefficient out and set the renormalisation
scale µ equal to mb = mkin

b (1 GeV). We observe a relatively good agreement between the LL
terms and the complete O(↵) corrections to the electron energy spectrum of the partonic
b ! ce⌫ transition, especially in the hard part of the spectrum, where the LL approximation
is expected to work best, and where the differences amount to around 10% to 20%. Writing

f (1)(y) =
L̄b/e

2
f

(1)
LL (y) + �f (1)(y) , (4.16)

with f
(1)
LL (y) given in (2.8), we can use our numerical results for f (1)(y) to obtain a sim-

ple approximate expression for �f (1)(y). Employing ⇢ = 0.057 and r = 1.25 · 10�8 and
identifying again the renormalisation scale µ with mb = mkin

b (1 GeV), we find

�f (1)(y) =

"
� 2.04264 + 119.012y � 476.678y2 + 2034.14y3

� 4402.22y4 + 4505.93y5 � 1807.38y6

� 66.8251 (y � ymax) ln (ymax � y)

#
✓(ymax � y) ,

(4.17)

where ymax = 1 � ⇢ + r. This formula encodes the exact non-LL terms for the input pa-
rameters listed above with a relative accuracy of better than 1%. It is worth noting that
in Section 2 we have used mb as the hard scale in the logarithm L̄b/e as defined in (2.4).
This is a somewhat arbitrary choice because the hard scale is in fact of the order of the
energy released, i.e. of O(mb �mc), and using a scale lower than mb in the LL QED effects
might thus be more appropriate. To investigate this aspect, we also display in Figure 5
the electron energy spectrum obtained using L̄c/e instead of L̄b/e in the LL QED predic-
tion (dotted red curve). We observe a better agreement near the endpoint but not elsewhere,
suggesting that the terms beyond the LLs cannot be accounted for by a rescaling. Hereafter
we hence evaluate all LL QED corrections with our standard choice L̄b/e.

By direct integration over the full phase space, we also obtain a value of the O(↵)

effects in the total decay width of the partonic b ! ce⌫ process,

� = �(0)g(⇢)
��C(µ)

��2
h
1 + ��(1)(µ)

i
, (4.18)

where �(0) and g(⇢) are defined in (2.5) and (2.10), respectively. The correction ��(1)(µ)

represents the O(↵) contribution to the matrix element of the operator introduced in (4.1)

– 14 –

[Bigi, MB, Gambino, Haisch, Piccione, ’23]
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Comparison with data

• Babar provides data with and without applying PHOTOS to subtract QED
effects

⇒ Perfect ground to test our calculations

⇒ Not the same for Belle at the moment, could be possible for future analysis?
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• The moments, since they are
normalised, are not affected by the
large threshold corrections

• The agreement with BaBar is very
good

〈En` 〉 =

∫
E`>E`,cut

dE`E
n
`
dΓ
dE`

ΓE`>E`,cut

[Bigi, MB, Gambino, Haisch, Piccione, ’23]
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Branching ratio

• The total branching ratio is not affected by large logs due to KLN theorem

• The large corrections are from the Wilson Coefficient and the threshold effects
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Figure 5. Comparison of the complete O(↵) corrections (4.16) to the electron energy spec-
trum (green curve) in b ! ce⌫ and the corresponding LL approximation (red curve). In the former
case also the uncertainty of our numerical phase-space integration is indicated (green band). The LL
approximation using L̄c/e instead of L̄b/e is displayed as well (dotted red curve). See the main text
for additional details.

evaluated at the scale µ. For the input parameters used before, we find

��(1)(µ) =
↵

⇡


ln

✓
µ2

m2
b

◆
+ 5.516(14)

�
, (4.19)

where the coefficient of the logarithm is exact while the quoted numerical coefficient has
as indicated an uncertainty of around 0.3% which is associated to our MC phase-space
integration. Combining (4.2), (4.18) and (4.19), one finds to O(↵) that

�

�(0)g(⇢)
= 1 +

↵

⇡


ln

✓
M2

Z

m2
b

◆
� 11

6
+ 5.516(14)

�

= 1 + 1.43% � 0.44% + 1.32% = 1 + 2.31% ,

(4.20)

where in the second line we have dropped the quoted uncertainty but given the numerical
results of the individual O(↵) terms as well as their sum. The first observation to make is
that the renormalisation scale dependence has cancelled between the O(↵) corrections to the
Wilson coefficient and the virtual contributions to the matrix element

�
cf. (4.2) and (4.7)

�

leaving behind the EW logarithm first computed in [3]. In fact, it is interesting to note that
this logarithm represents about 60% of the total O(↵) correction in (4.20). Comparing the
result (3.6) with (4.20) one furthermore observes that the ⇡2-enhanced terms calculated
in Section 3 provide about 80% of ��(1)(mb), i.e. the complete O(↵) contribution to the
matrix element of (4.1). Hence, the complete O(↵) correction to the total decay width
of b ! ce⌫ is well approximated by the sum of the EW logarithm and the ⇡2-enhanced
threshold effects, which are both scale- and scheme-independent.

The relevant quantities used in the experimental analyses are the branching ratio of
B ! Xce⌫, the electron energy spectrum and its moments with a lower cut Ecut on the

– 15 –
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Ecut �BRBaBar
incl �BRLL

incl �BRNLL
incl �BR↵

incl �BR
1/m2

b
incl �BRincl �

0.6 �1.26% �1.92% �1.95% �0.54% �0.50% �0.45% +0.34

0.8 �1.87% �2.88% �2.91% �1.36% �1.29% �1.22% +0.30

1.0 �2.66% �4.03% �4.04% �2.38% �2.26% �2.15% +0.25

1.2 �3.56% �5.43% �5.41% �3.65% �3.43% �3.27% +0.14

1.5 �5.22% �8.41% �8.26% �6.37% �5.73% �5.39% �0.09

Table 2. Relative size of the QED corrections to BRincl(Ecut). The values of Ecut are given in
units of GeV. The entries in the column �BRBaBar

incl are the corrections obtained by BaBar in [44],
while the numbers for �BRLL

incl, �BRNLL
incl and �BR↵

incl successively include the LL, NLL and complete
O(↵) corrections to the b ! ce⌫ branching ratio. The �BR

1/m2
b

incl numbers include all partonic QED
effects as well as the LL QED corrections to the O(⇤2

QCD/m2
b) power corrections. The entries in

the column �BRincl represent our best predictions and include besides all partonic QED effects
the power-suppressed LL QED corrections up to O(⇤3

QCD/m3
b)
�
see (5.2)

�
. The relative shifts in

standard deviations (�) that we obtain when using our best QED calculation to correct the BaBar
measurements are given in the last column. See main text for additional details.

reduction would be larger by around 0.4% if the constant �11/6 had been included in AEW

and not in f(y)
�
cf. (5.1) and (5.2)

�
. As a result when using our best QED calculation to

correct the BaBar measurements we obtain BRincl(Ecut) values that are on average larger by
about 0.2� than the QED corrected values for BRincl(Ecut) given in [44]. Since for low Ecut

the values of �BRincl are about 0.8% above the �BRBaBar
incl numbers, we expect that our im-

proved calculation of QED effects will decrease the corrected inclusive branching ratio and
therefore decrease |Vcb| by roughly 0.4% compared to the determination performed in [2].
Making this statement more precise, however, would require a full HQE global fit which is
beyond the scope of this work.

The absolute shift of the QED corrections to `1(Ecut), `2(Ecut) and `3(Ecut) is shown
in the three panels in Figure 7. In order to not spoil the strong cancellations between
the quantum corrections to the numerator and the denominator that enter the normalised
central moments [7, 47] we perform a double-series expansion in ↵ and ⇤QCD/mb when cal-
culating the ratios (4.23). In this expansion we keep all the terms up to the order indicated
by the superscript following the notation introduced in (5.2). We add that we have verified
that the expanded and unexpanded results of the central moments are numerically quite
close together. The black curves correspond to the QED corrections estimated by BaBar
in [44] with the help of PHOTOS, while the red (green) lines represent our LL

�
full O(↵)

�

predictions. The grey bands represent the systematic uncertainties that are associated to
the experimental subtraction procedure of QED corrections performed in [44], while the
black error bars correspond to the total uncertainties of the BaBar measurements. From all
three plots it is evident that the LL QED corrections describe the BaBar corrections pretty
well and that the numerical impact of the non-LL O(↵) corrections is notably smaller in
the case of `1(Ecut), `2(Ecut) and `3(Ecut) than for BRincl(Ecut). Still the inclusion of the

– 21 –

[Bigi, MB, Gambino, Haisch, Piccione, ’23]
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QED for exclusive decays

• For B0 → D+`ν̄, the threshold effects were calculated and are 1 + απ
[Ginsberg, ’66, De Boer, Kitahara, Nisandzic, ’18]

• For B0 → D∗+`ν̄, the threshold effects might have a different structure because
the hadronic matrix element is different

⇒ To verify explicitly

• Structure-dependent terms are unknown, but maybe something is doable in the
HQE?

• How do we reconcile the threshold effects between the exclusive and the
inclusive?

B(B → Xc`ν) = B(B → D`ν) + B(B → D∗`ν) + B(B → D∗∗`ν) + . . .

14/18



Global fit

• The results for the the Vcb determination using lepton energy and hadronic mass
moments, and the q2 moments seem very compatible

• What would be the result of a combined fit?

⇒ What’s the combined value of Vcb and its uncertainty

⇒ Relevant to extract the non-perturbative parameters

Main differences wrt Bernlochner et al:

• Inclusion of the leading O(α2
sβ0) corrections

• Power corrections up to 1/m3
b

15/18



Global fit

mkin
b mc µ2

⇡ µ2
G ⇢3

D ⇢3
LS 102BRc`⌫ 103|Vcb| �2

min(/dof)

without 4.573 1.092 0.477 0.306 0.185 �0.130 10.66 42.16 22.3
q2-moments 0.012 0.008 0.056 0.050 0.031 0.092 0.15 0.51 0.474

Belle II
4.573 1.092 0.460 0.303 0.175 �0.118 10.65 42.08 26.4
0.012 0.008 0.044 0.049 0.020 0.090 0.15 0.48 0.425

Belle
4.572 1.092 0.434 0.302 0.157 �0.100 10.64 41.96 28.1
0.012 0.008 0.043 0.048 0.020 0.089 0.15 0.48 0.476

Belle & 4.572 1.092 0.449 0.301 0.167 �0.109 10.65 42.02 41.3
Belle II 0.012 0.008 0.042 0.048 0.018 0.089 0.15 0.48 0.559

Table 3. Global fit results with and without the q2 moments from Belle/Belle II for µs = mkin
b /2

and µc = 2 GeV. All parameters are in GeV at the appropriate power and all, except mc , in
the kinetic scheme at µk = 1 GeV. The first row shows the central values and the second row the
uncertainties. The first case corresponds to the default fit of [12].
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Figure 4. Results for the central moments including the theory uncertainty bands (green) and the
parametric uncertainty from the results of the fit performed in this paper (blue). The combined
errors are not shown.

moments with q2
cut = {3.0, 4.5, 6.0, 7.5} GeV2. We have checked that the fits are very stable

with respect to the choice of the subset of cuts to be included. We use the correlations
between Belle and Belle II data that were employed in [20].2 We see in Table 3 that there is
excellent agreement among the various fits, with a small downward shift of µ2

⇡ and ⇢3
D (and

consequently of Vcb) with respect to the results of [12]. The uncertainty on ⇢3
D is reduced

significantly, but this reflects in only a small reduction of the final uncertainty on |Vcb| from
5.1⇥10�4 to 4.8⇥10�4. This is mostly due to the relevance of the theoretical uncertainties.
The analogue of Fig. 3 with the parameters resulting from the fit including Belle and Belle
II data is presented in Fig. 4. We observe a clear reduction of the parametric uncertainty,
mostly due to the improved determination of ⇢3

D.
We have performed a number of other fits, changing the scales and selecting different

2We are grateful to the authors of [20] for sharing their covariance matrices.
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Global fit + QED

• Small changes compared to the inputs in 2107.00604

⇒ New FLAG average for the heavy quark masses

• New computation of QED effects including threshold effects included by
correcting the BaBar branching fraction

Rnew
QCD = ζQEDR

Babar
QCD

⇒ ζQED accounts for the misalignment between the corrected BaBar results and the
results from the full O(αe) computation

mkin
b mc(2 GeV) µ2

⇡ µ2
G(mb) ⇢3

D(mb) ⇢3
LS BRc`⌫ 103|Vcb|

4.573 1.090 0.453 0.288 0.176 �0.113 10.62 41.95
0.012 0.010 0.043 0.049 0.019 0.090 0.15 0.48

1 0.380 -0.219 0.557 -0.013 -0.172 -0.063 -0.428
1 0.005 -0.235 -0.051 0.083 0.030 0.071

1 -0.083 0.537 0.241 0.140 0.335
1 -0.247 0.010 0.007 -0.253

1 -0.023 0.023 0.140
1 -0.011 0.060

1 0.696
1

Table 4. Results of the updated fit in our default scenario (µc = 2 GeV, µb = mb/2). All
parameters are in GeV at the appropriate power and all, except mc, in the kinetic scheme at µk = 1

GeV. The first and second rows give central values and uncertainties, the correlation matrix follows.
�2

min = 40.3 and �2
min/dof = 0.544.

4 Summary and outlook

The recent measurements of the q2-moments by Belle and Belle II [18, 19] has opened
new opportunities for the study of inclusive semileptonic B decays. In this paper we have
presented the results of a new calculation of the moments of the q2 spectrum in inclusive
semileptonic B decays that includes contributions up to O(↵2

s�0) and O(↵s⇤
3
QCD/m3

b). In
particular, we have reproduced many of the results presented in Refs. [15, 30] and computed
for the first time the BLM corrections O(↵2

s�0) to the q2-moments. If we employ the results
of the default fit of [12] as inputs, our predictions for the central moments of the q2 spectrum
are in excellent agreement with Belle II data [19], while there is a mild tension with Belle
data [18] in the case of the second and third central moments. As a matter of fact, the
Belle and Belle II for those moments differ by about 2�.

The inclusion of the q2-moments in the global fit confirms the above picture. The
q2-moments lower slightly the value of ⇢3

D(mb) by half a � and that of |Vcb| by a fraction
of a �, decreasing the final uncertainty on them from 0.031 to 0.018GeV3 and from 0.51 to
0.47 ⇥10�3, respectively. Because of its correlation with ⇢3

D, the determination of µ2
⇡ also

benefit from the new data, with the uncertainty going down from 0.056 to 0.042 GeV2. We
have also included the results of the new calculation of QED and electroweak effects on the
lepton energy spectrum and moments [39]. Applying them to the BaBar data only, they
lower the values of the branching fraction and of |Vcb| by about 0.2%. Our final result for
|Vcb|, obtained updating the input charm and bottom masses and increasing the uncertainty
on the hadronic moments, is

|Vcb| = (41.95 ± 0.27exp ± 0.31th ± 0.25�) ⇥ 10�3 = (41.95 ± 0.48) ⇥ 10�3 . (4.1)

This is still in tension with most estimates based on the Belle and BaBar measurements
of exclusive decay B ! D⇤`⌫ [41–44], but agrees well with the very recent Belle II result

– 17 –

[Finauri, Gambino, ’23]

Can we apply the same procedure to Belle measurements?
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Summary and Outlook

Summary

• Main message: the inclusive |Vcb| determination is stable

⇒ There are different datasets and different methods that yield separated very
compatible results and a first joint fit stresses their compatibility

⇒ Personal opinion: if there are no major changes in the data, it is unlikely that the
central value for Vcb will change by a large amount

Outlook

• We need to understand how to correct for the QED effects not accounted for by
PHOTOS

⇒ Can we rescale the branching fractions by Belle?

⇒ Would it be profitable to build an ad hoc MC based on a dedicated calculation for
the inclusive decays?

18/18



Appendix



• Longstanding discrepancy
between inclusive and
exclusive determinations

• A lot of activity lately

⇒ new experimental
determinations

⇒ new calculations of
exclusive form factors

1/14



Why is Vcb important?

• Key parameter in the prediction of
flavour observables

⇒ εK ∼ |Vcb|4

⇒ B(B̄s → µ+µ−) ∼ |VtbV ∗ts|2
∼ |Vcb|2[1+O(λ2)]

• Tests the SM flavour structure

in
cl

u
si

v
e

ex
cl

u
si

v
e

[Buras, Venturini, ’21]
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Theory framework

Γ =
1

mB
Im

∫
d4x〈B(p)|T

{
H†eff(x)Heff(0)

}
|B(p)〉
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Theory framework

Γ =
1

mB
Im

∫
d4x〈B(p)|T

{
H†eff(x)Heff(0)

}
|B(p)〉

∑
n,i

1
mn
b
Cn,iOn+3,i
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Theory framework

Γsl = Γ0f(ρ)
[
1 + a1

(αs
π

)
+ a2

(αs
π

)2

+ a3

(αs
π

)3

−
(

1

2
− p1

(αs
π

)) µ2
π

m2
b

+
(
g0 + g1

(αs
π

)) µ2
G(mb)

m2
b

+ d0
ρ3
D

m3
b

− g0
ρ3
LS

m3
b

+ . . .
]

µ2
π(µ) =

1

2mB
〈B|b̄v(i ~D)2bv|B〉µ µ2

G(µ) =
1

2mB
〈B|b̄v

i

2
σµνG

µνbv|B〉µ

• Coefficients of the expansions are known

• Ellipses stands for higher orders
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How do we constrain the OPE parameters?
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• Lepton energy and hadronic invariant mass distributions can be used to extract
non perturbative information
• The moments admit a Heavy Quark Expansion

Mi = M
(0)
i +

αs
π
M

(1)
i +

(αs
π

)2

M
(2)
i +M
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i
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+M
ρ3D
i
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+M
ρ3LS
i

ρ3
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+. . .

• q2 moments can also be used [Fael, Mannel, Vos, ’18]
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Scheme conventions

• Pole mass scheme

⇒ Renormalon ambiguity

⇒ Perturbative series is factorially divergent

Γsl ∼
∑
k

k!

(
β0

2

αs

π

)k

• We choose to use to b-quark mass and the non perturbative parameters in the
kinetic scheme

[Bigi, Shifman,Uraltsev,Vainshtein]

⇒ Wilsonian cutoff µ = 1 GeV

• We express the charm mass in the MS scheme
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Inclusion of O(α3
s) results

b-quark mass:

mkin
b (1 GeV) = [4169 + 259αs + 78α2

s
+ 26α3

s
] MeV = (4526± 15) MeV

Semileptonic width

⇒ µ = 1 GeV, µb = mkin
b , µc = 3 GeV

Γsl = Γ0f(ρ)
[
0.9257− 0.1163αs − 0.0349α2

s
− 0.0097α3

s

]
⇒ µ = 1 GeV, µb = mkin

b /2, µc = 2 GeV

Γsl = Γ0f(ρ)
[
0.9257− 0.1138αs − 0.0011α2

s
+ 0.0104α3

s

]

50% reduction!

residual uncertainty ∼ 0.5%

[Fael, Schönwald, Steinhauser, ’20]
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Residual uncertainty

• Theory uncertainties are essential for a good fit to data [Gambino, Schwanda, ’14]

• Residual scale dependence

⇒ Milder including O(α3
s)

⇒ We choose µc = 2 GeV, µb = mkinb /2 and µ = 1 GeV to minimize scale
dependence

• Other sources of uncertainties e.g. higher power corrections are slightly smaller

[MB, Capdevila, Gambino, ’21]

2 loop, µb = mkinb , µc = 3 GeV

3 loop, µb = mkinb , µc = 3 GeV

2 loop, µb = mkinb /2, µc = 2 GeV

3 loop, µb = mkinb /2, µc = 2 GeV
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⇒ Milder including O(α3
s)

⇒ We choose µc = 2 GeV, µb = mkinb /2 and µ = 1 GeV to minimize scale
dependence

• Other sources of uncertainties e.g. higher power corrections are slightly smaller

1.2% residual uncertainty

[MB, Capdevila, Gambino, ’21]

2 loop, µb = mkinb , µc = 3 GeV
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The semileptonic fit

mkin
b mc(2GeV) µ2

π ρ3
D µg(mb) ρLS BRc`ν 103|Vcb|

4.573 1.092 0.477 0.185 0.306 −0.130 10.66 42.16
0.012 0.008 0.056 0.031 0.050 0.092 0.15 0.51

• Constraints from FLAG Nf = 2 + 1 + 1: mb = (mb) = 4.198(12) GeV and
mc = (mc) = 0.988(7) GeV

• No new experimental input wrt to the one in 1411.6560

• The central value of Vcb is stable

• Without constraints on mb, we extract m̄b(m̄b) = 4.210(22) GeV

[MB, Capdevila, Gambino, ’21]
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0.012 0.008 0.056 0.031 0.050 0.092 0.15 0.51

• Constraints from FLAG Nf = 2 + 1 + 1: mb = (mb) = 4.198(12) GeV and
mc = (mc) = 0.988(7) GeV

• No new experimental input wrt to the one in 1411.6560

• The central value of Vcb is stable

• Without constraints on mb, we extract m̄b(m̄b) = 4.210(22) GeV

Vcb = 42.16(32)exp(30)th(25)Γ · 10−3

[MB, Capdevila, Gambino, ’21]
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Higher power corrections

• At O(1/m4) the number of operators become large

⇒ 9 at dim 7
⇒ 18 at dim 8

Lowest Lying State Saturation Approximation: [Mannel, Turczyk, Uraltsev, ’11]

〈B|O1O2|B〉 =
∑
n

〈B|O1|n〉〈n|O2|B〉

At dimension 6 the LLSA works well:

ρ3
D = εµ2

π ρ3
LS = −εµ2

G ε ∼ 0.4 GeV

• Large corrections to the LLSA are possible [Gambino, Mannel, Uraltsev, ’12]

• 60% gaussian uncertainty on higher order parameters

Vcb = 42.00(53)× 10−3

complete set of states
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Inclusive vs. Exclusive

• There is a spread between inclusive and exclusive determinations of Vcb

• The tension between inclusive and FNAL/MILC accounts to almost 4σ!

• Determination from q2 moments [see Keri’s talk]
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The inclusive Bs width

• Bd and Bs widths are linked through violation of SU(3)F

δµ2
π

Γsl(B)

Γsl(B)
= −0.9(1)%

δµ2
G

Γsl(B)

Γsl(B)
= −3.2(5)%

δρ3
D

Γsl(B)

Γsl(B)
= −3.2(5)%

δρ3
LS

Γsl(B)

Γsl(B)
= −0.3(2)%

• Previous studies used sum rules and HQ relations [Bigi, Mannel, Uraltsev, ’11]

• We update those estimates

⇒ Preliminary lattice estimates [Gambino, Melis, Simula, ’17]

⇒ Most recent semileptonic fit

Γsl(Bs)

Γsl(Bd)
− 1 = −(1.8± 0.8)% .

[MB, Gambino, ’21]
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The inclusive Λb width

• Same arguments as before

• µ2
G and ρ3

LS terms vanish for ground state baryons

δµ2
G

Γsl(B) + δρ3
LS

Γsl(B)

Γsl(B)
= −(3.5± 0.6)%

⇒ Biggest difference comes from these terms

⇒ No big numerical changes from previous determinations

Γsl(Λb)

Γsl(Bd)
− 1 = (4.1± 1.6)% ,

[MB, Gambino, ’21]
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Summary and Prospects

Summary:

• Tension between inclusive and exclusive determination of Vcb is not resolved

• New O(α3
s) contributions to Γsl show that

⇒ perturbative effects are under control

⇒ reduction of the final uncertainty of 1/3

⇒ the central value of Vcb is stable

Prospects:

• αs corrections for the hadronic parameters in the moments

• Lattice calculations for the Bs width are ongoing

• Moments measurements for Bs and Λb modes
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