Challenges for a global inclusive V_{cb} analysis

Marzia Bordone

Belle II Physics Week 2023 02.11.2023

Are data and theory predictions aligned?

How do we combine the various datasets?

Traditional approach

		[Gambino, Schw	anda, 13
	experiment	values of $E_{cut}(\text{GeV})$	Ref.
R^*	BaBar	0.6, 1.2, 1.5	[26, 27]
ℓ_1	BaBar	0.6, 0.8, 1, 1.2, 1.5	[26, 27]
ℓ_2	BaBar	0.6, 1, 1.5	[26, 27]
ℓ_3	BaBar	0.8, 1.2	[26, 27]
h_1	BaBar	0.9, 1.1, 1.3, 1.5	26
h_2	BaBar	0.8, 1, 1.2, 1.4	26
h_3	BaBar	0.9, 1.3	26
R^*	Belle	0.6, 1.4	28
ℓ_1	Belle	1, 1.4	28
ℓ_2	Belle	0.6, 1.4	28
ℓ_3	Belle	0.8, 1.2	28
h_1	Belle	0.7, 1.1, 1.3, 1.5	29
h_2	Belle	0.7, 0.9, 1.3	[29]
$h_{1,2}$	CDF	0.7	31
$h_{1,2}$	CLEO	1, 1.5	32
$\ell_{1,2,3}$	DELPHI	0	33
$h_{1,2,3}$	DELPHI	0	[33]

Traditional approach

New data are welcome

3/18

The semileptonic fit

m_b^{kin}	$\overline{m}_c(2 \text{GeV})$	μ_{π}^2	$ ho_D^3$	$\mu_g(m_b)$	$ ho_{LS}$	$\mathrm{BR}_{c\ell\nu}$	$10^{3} V_{cb} $
4.573	1.092	0.477	0.185	0.306	-0.130	10.66	42.16
0.012	0.008	0.056	0.031	0.050	0.092	0.15	0.51
							\setminus \angle

- Constraints from FLAG $N_f = 2 + 1 + 1$: $\overline{m}_b = (\overline{m}_b) = 4.198(12) \text{ GeV}$ and $\overline{m}_c = (\overline{m}_c) = 0.988(7) \text{ GeV}$
- No new experimental input wrt to the one in 1411.6560
- The central value of V_{cb} is stable
- Without constraints on m_b , we extract $\bar{m}_b(\bar{m}_b) = 4.210(22) \,\text{GeV}$

The semileptonic fit

m_b^{kin}	$\overline{m}_c(2 \text{GeV})$	μ_{π}^2	$ ho_D^3$	$\mu_g(m_b)$	$ ho_{LS}$	$\mathrm{BR}_{c\ell\nu}$	$10^{3} V_{cb} $
4.573	1.092	0.477	0.185	0.306	-0.130	10.66	42.16
0.012	0.008	0.056	0.031	0.050	0.092	0.15	0.51
							\smallsetminus

- Constraints from FLAG $N_f = 2 + 1 + 1$: $\overline{m}_b = (\overline{m}_b) = 4.198(12) \text{ GeV}$ and $\overline{m}_c = (\overline{m}_c) = 0.988(7) \text{ GeV}$
- No new experimental input wrt to the one in 1411.6560
- The central value of V_{cb} is stable
- Without constraints on m_b , we extract $\bar{m}_b(\bar{m}_b) = 4.210(22) \,\text{GeV}$

$$V_{cb} = 42.16(32)_{exp}(30)_{th}(25)_{\Gamma} \cdot 10^{-3}$$

New approach: q^2 moments

Idea: use q^2 spectrum to full use RPI relations in HQE

• First proposal

[Fael, Mannel, Vos, '18]

$$\langle (q^2)^n \rangle = \frac{\int_{q^2_{\min}} dq^2 (q^2)^n \frac{d\Gamma}{dq^2}}{\int_{q^2_{\min}} dq^2 \frac{d\Gamma}{dq^2}}$$

• V_{cb} extraction from Belle and Belle II data [Bernlochner et al, '22]

 $V_{cb} = (41.79 \pm 0.57) \times 10^{-3}$

• Value for ρ_D in tension with previous determinations

Where do we stand?

- 1. What else is needed on the theory side?
 - \Rightarrow Are QED corrections currently taken into account for the moments and the branching fractions?
 - \Rightarrow Are there any observables for which we need to compute higher order in α_s or 1/m?

- 2. We have two methods that yield very compatible results for V_{cb}
 - ⇒ Can they be combined in a global fit?

What about QED Effect?

Why do we care about QED Effects?

- We want to match the theory description with the experimental measurements that are always affected by photon emissions
- The MC PHOTOS accounts for QED effects, reporting results which can be compared with the non-radiative theory predictions
- PHOTOS knows only about real emission and obtains the virtual part by normalisation

$$\frac{d\Gamma}{dzdx} = \mathcal{F}^{(0)}(\omega_{\text{virtual}} + \omega_{\text{real}}) \Rightarrow \int dx(\omega_{\text{virtual}} + \omega_{\text{real}}) = 1$$

Are virtual corrections under control?

The inclusive case

- If wrt QCD the hadronic and leptonic system are separated, QED corrections mix them
 - \Rightarrow Defining fully inclusive observables is harder
 - ⇒ Analogy with experiments is essential
- The OPE is still valid for the total decay width
- At the differential level, this is generally not true
 - \Rightarrow Large contributions factorise wrt to tree-level
 - \Rightarrow Useful to go beyond NLO

Two calculation approaches

1. Splitting Functions

$$\begin{pmatrix} \frac{d\Gamma}{dy} \end{pmatrix}^{(1)} = \frac{\alpha}{2\pi} \bar{L}_{b/e} \int_{y}^{1-\rho} \frac{dx}{x} P_{ee}^{(0)} \left(\frac{y}{x}\right) \left(\frac{d\Gamma}{dx}\right)^{(0)} \\ \log(m_{b}^{2}/m_{e}^{2}) \qquad \text{plus distribution}$$

- Correction vanishes for the inclusive branching fraction
- Suitable for evaluating $\mathcal{O}(\alpha^2)$ and $\mathcal{O}(\alpha/m_b^n)$ corrections

2. Full $\mathcal{O}(\alpha)$ corrections

- · Access all corrections, not only the one that factorise
- Real corrections are computationally expensive
 - \Rightarrow Cuba library employed to carry out the 4-body integration
 - \Rightarrow Phase space splitting used to reduce the size of the integrands

Leading contributions

1. Collinear logs: captured by splitting functions

$$\sim rac{lpha_e}{\pi} \log^2\left(rac{m_b^2}{m_e^2}
ight)$$

2. Threshold effects or Coulomb terms

3. Wilson Coefficient

 $\sim \frac{4\pi\alpha_e}{9}$

 $\sim \frac{\alpha_e}{\pi} \left[\log \left(\frac{M_Z^2}{\mu^2} - \frac{11}{6} \right) \right]$

Lepton Energy spectrum

[Bigi, MB, Gambino, Haisch, Piccione, '23]

- We compute bins in the lepton energy using the full $\mathcal{O}(\alpha)$ calculation
- We compare them to the results given by the splitting functions
- The difference the two calculations for the lepton energy spectrum and obtain a full analytic formula for the radiative corrections
 - \Rightarrow Relatively small, easy-to-use formula to obtain branching fractions, lepton energy moments w/o cuts

$$f^{(1)}(y) = \frac{\bar{L}_{b/e}}{2} f^{(1)}_{\rm LL}(y) + \Delta f^{(1)}(y)$$

Comparison with data

- Babar provides data with and without applying PHOTOS to subtract QED effects
 - \Rightarrow Perfect ground to test our calculations
 - ⇒ Not the same for Belle at the moment, could be possible for future analysis?

- The moments, since they are normalised, are not affected by the large threshold corrections
- The agreement with BaBar is very good

$$\langle E_{\ell}^{n} \rangle = \frac{\int_{E_{\ell} > E_{\ell, \text{cut}}} dE_{\ell} E_{\ell}^{n} \frac{d\Gamma}{dE_{\ell}}}{\Gamma_{E_{\ell} > E_{\ell, \text{cut}}}}$$

Branching ratio

[Bigi, MB, Gambino, Haisch, Piccione, '23]

- The total branching ratio is not affected by large logs due to KLN theorem
- The large corrections are from the Wilson Coefficient and the threshold effects

$$\frac{\Gamma}{\Gamma^{(0)}g(\rho)} = 1 + \frac{\alpha}{\pi} \left[\ln\left(\frac{M_Z^2}{m_b^2}\right) - \frac{11}{6} + 5.516(14) \right]$$

$$= 1 + 1.43\% - 0.44\% + 1.32\% = 1 + 2.31\%$$

$E_{\rm cut}$	$\delta {\rm BR}_{\rm incl}^{\rm BaBar}$	δBR_{incl}^{LL}	$\delta \mathrm{BR}^{\mathrm{NLL}}_{\mathrm{incl}}$	$\delta BR_{incl}^{\alpha}$	$\delta BR_{incl}^{1/m_b^2}$	δBR_{incl}	σ
0.6	-1.26%	-1.92%	-1.95%	-0.54%	-0.50%	-0.45%	+0.34
0.8	-1.87%	-2.88%	-2.91%	-1.36%	-1.29%	-1.22%	+0.30
1.0	-2.66%	-4.03%	-4.04%	-2.38%	-2.26%	-2.15%	+0.25
1.2	-3.56%	-5.43%	-5.41%	-3.65%	-3.43%	-3.27%	+0.14
1.5	-5.22%	-8.41%	-8.26%	-6.37%	-5.73%	-5.39%	-0.09

QED for exclusive decays

• For $B^0 \to D^+ \ell \bar{\nu}$, the threshold effects were calculated and are $1 + \alpha \pi$

[Ginsberg, '66, De Boer, Kitahara, Nisandzic, '18]

• For $B^0\to D^{*+}\ell\bar\nu$, the threshold effects might have a different structure because the hadronic matrix element is different

 \Rightarrow To verify explicitly

- Structure-dependent terms are unknown, but maybe something is doable in the HQE?
- How do we reconcile the threshold effects between the exclusive and the inclusive?

$$\mathcal{B}(B \to X_c \ell \nu) = \mathcal{B}(B \to D \ell \nu) + \mathcal{B}(B \to D^* \ell \nu) + \mathcal{B}(B \to D^{**} \ell \nu) + \dots$$

Global fit

- The results for the the V_{cb} determination using lepton energy and hadronic mass moments, and the q^2 moments seem very compatible
- What would be the result of a combined fit?
 - \Rightarrow What's the combined value of V_{cb} and its uncertainty
 - \Rightarrow Relevant to extract the non-perturbative parameters

Main differences wrt Bernlochner et al:

- Inclusion of the leading $\mathcal{O}(\alpha_s^2\beta_0)$ corrections
- Power corrections up to $1/m_b^3$

Global fit

[Finauri, Gambino, '23]

	$m_b^{\rm kin}$	\overline{m}_c	μ_{π}^2	μ_G^2	ρ_D^3	ρ_{LS}^3	$10^2 {\rm BR}_{c\ell\nu}$	$10^3 V_{cb} $	$\chi^2_{\rm min}(/{\rm dof})$
without	4.573	1.092	0.477	0.306	0.185	-0.130	10.66	42.16	22.3
q^2 -moments	0.012	0.008	0.056	0.050	0.031	0.092	0.15	0.51	0.474
Dalla II	4.573	1.092	0.460	0.303	0.175	-0.118	10.65	42.08	26.4
Belle II	0.012	0.008	0.044	0.049	0.020	0.090	0.15	0.48	0.425
Dalla	4.572	1.092	0.434	0.302	0.157	-0.100	10.64	41.96	28.1
Delle	0.012	0.008	0.043	0.048	0.020	0.089	0.15	0.48	0.476
Belle &	4.572	1.092	0.449	0.301	0.167	-0.109	10.65	42.02	41.3
Belle II	0.012	0.008	0.042	0.048	0.018	0.089	0.15	0.48	0.559

Global fit + QED

- Small changes compared to the inputs in 2107.00604
 - \Rightarrow New FLAG average for the heavy quark masses
- New computation of QED effects including threshold effects included by correcting the BaBar branching fraction

 $R_{\rm QCD}^{\rm new} = \zeta_{\rm QED} R_{\rm QCD}^{\rm Babar}$

 $\Rightarrow \zeta_{\rm QED} \text{ accounts for the misalignment between the corrected BaBar results and the results from the full <math display="inline">\mathcal{O}(\alpha_e)$ computation

$m_b^{\rm kin}$	$\overline{m}_c(2{ m GeV})$	μ_{π}^2	$\mu_G^2(m_b)$	$\rho_D^3(m_b)$	ρ_{LS}^3	$\mathrm{BR}_{c\ell\nu}$	$10^{3} V_{cb} $
4.573	1.090	0.453	0.288	0.176	-0.113	10.62	41.95
0.012	0.010	0.043	0.049	0.019	0.090	0.15	0.48

Can we apply the same procedure to Belle measurements?

Summary and Outlook

Summary

- Main message: the inclusive $|V_{cb}|$ determination is stable
 - \Rightarrow There are different datasets and different methods that yield separated very compatible results and a first joint fit stresses their compatibility
 - $\Rightarrow \frac{\text{Personal opinion: if there are no major changes in the data, it is unlikely that the central value for V_{cb} will change by a large amount$

Outlook

- We need to understand how to correct for the QED effects not accounted for by PHOTOS
 - \Rightarrow Can we rescale the branching fractions by Belle?
 - ⇒ Would it be profitable to build an ad hoc MC based on a dedicated calculation for the inclusive decays?

Appendix

- Longstanding discrepancy between inclusive and exclusive determinations
- A lot of activity lately
 - \Rightarrow new experimental determinations
 - ⇒ new calculations of exclusive form factors

Why is V_{cb} important?

$$\Gamma = \frac{1}{m_B} \operatorname{Im} \int d^4 x \langle B(p) | T \left\{ \mathcal{H}_{\text{eff}}^{\dagger}(x) \mathcal{H}_{\text{eff}}(0) \right\} | B(p) \rangle$$

$$\Gamma = \frac{1}{m_B} \operatorname{Im} \int d^4 x \langle B(p) | T \left\{ \mathcal{H}_{\text{eff}}^{\dagger}(x) \mathcal{H}_{\text{eff}}(0) \right\} | B(p) \rangle$$

$$\uparrow$$

$$\sum_{n,i} \frac{1}{m_b^n} \mathcal{C}_{n,i} \mathcal{O}_{n+3,i}$$

$$\Gamma = \frac{1}{m_B} \operatorname{Im} \int d^4 x \langle B(p) | T \left\{ \mathcal{H}_{\text{eff}}^{\dagger}(x) \mathcal{H}_{\text{eff}}(0) \right\} | B(p) \rangle$$

$$\uparrow$$

$$\sum_{n,i} \frac{1}{m^n} \mathcal{C}_{n,i} \mathcal{O}_{n+3,i}$$

- The Wilson coefficients are calculated perturbatively
- The matrix elements $\langle B(p) | \mathcal{O}_{n+3,i} | B(p) \rangle$ are non perturbative
 - \Rightarrow They need to be determined with non-perturbative methods [Hashimoto's talk]
 - \Rightarrow They can be extracted from data
 - \Rightarrow With large n, large number of operators

$$\Gamma = \frac{1}{m_B} \operatorname{Im} \int d^4 x \langle B(p) | T \left\{ \mathcal{H}_{\text{eff}}^{\dagger}(x) \mathcal{H}_{\text{eff}}(0) \right\} | B(p) \rangle$$

$$\uparrow$$

$$\sum_{n,i} \frac{1}{m^n} \mathcal{C}_{n,i} \mathcal{O}_{n+3,i}$$

- The Wilson coefficients are calculated perturbatively
- The matrix elements $\langle B(p)|\mathcal{O}_{n+3,i}|B(p)
 angle$ are non perturbative
 - \Rightarrow They need to be determined with non-perturbative methods [Hashimoto's talk]
 - \Rightarrow They can be extracted from data
 - $\Rightarrow \text{ With large } n, \text{ large number of operators}$ \uparrow loss of predictivity

$$\Gamma_{sl} = \Gamma_0 f(\rho) \Big[1 + a_1 \left(\frac{\alpha_s}{\pi}\right) + a_2 \left(\frac{\alpha_s}{\pi}\right)^2 + a_3 \left(\frac{\alpha_s}{\pi}\right)^3 - \left(\frac{1}{2} - p_1 \left(\frac{\alpha_s}{\pi}\right)\right) \frac{\mu_{\pi}^2}{m_b^2} \\ + \left(g_0 + g_1 \left(\frac{\alpha_s}{\pi}\right)\right) \frac{\mu_G^2(m_b)}{m_b^2} + d_0 \frac{\rho_D^3}{m_b^3} - g_0 \frac{\rho_{LS}^3}{m_b^3} + \dots \Big]$$

$$\mu_{\pi}^{2}(\mu) = \frac{1}{2m_{B}} \langle B|\bar{b}_{v}(i\vec{D})^{2}b_{v}|B\rangle_{\mu} \qquad \mu_{G}^{2}(\mu) = \frac{1}{2m_{B}} \langle B|\bar{b}_{v}\frac{i}{2}\sigma_{\mu\nu}G^{\mu\nu}b_{v}|B\rangle_{\mu}$$

- Coefficients of the expansions are known
- Ellipses stands for higher orders

 $\Gamma_{sl} = \Gamma_0 f(\rho) \Big[1 + a_1 \left(\frac{\alpha_s}{\pi}\right) + a_2 \left(\frac{\alpha_s}{\pi}\right)^2 + a_3 \left(\frac{\alpha_s}{\pi}\right)^3 - \left(\frac{1}{2} - p_1 \left(\frac{\alpha_s}{\pi}\right)\right) \frac{\mu_{\pi}^2}{m_b^2} \\ + \left(g_0 + g_1 \left(\frac{\alpha_s}{\pi}\right)\right) \frac{\mu_G^2(m_b)}{m_b^2} + d_0 \frac{\rho_D^3}{m_b^3} - g_0 \frac{\rho_{LS}^3}{m_b^3} + \dots \Big]$

$$\mu_{\pi}^{2}(\mu) = \frac{1}{2m_{B}} \langle B|\bar{b}_{v}(i\vec{D})^{2}b_{v}|B\rangle_{\mu} \qquad \mu_{G}^{2}(\mu) = \frac{1}{2m_{B}} \langle B|\bar{b}_{v}\frac{i}{2}\sigma_{\mu\nu}G^{\mu\nu}b_{v}|B\rangle_{\mu}$$

- · Coefficients of the expansions are known
- Ellipses stands for higher orders

How do we constrain the OPE parameters?

- Lepton energy and hadronic invariant mass distributions can be used to extract non perturbative information
- The moments admit a Heavy Quark Expansion

$$M_{i} = M_{i}^{(0)} + \frac{\alpha_{s}}{\pi} M_{i}^{(1)} + \left(\frac{\alpha_{s}}{\pi}\right)^{2} M_{i}^{(2)} + M_{i}^{\mu_{\pi}^{2}} \frac{\mu_{\pi}^{2}}{m_{b}^{2}} + M_{i}^{\mu_{G}^{2}} \frac{\mu_{G}^{2}}{m_{b}^{2}} + M_{i}^{\rho_{D}^{3}} \frac{\rho_{D}^{3}}{m_{b}^{3}} + M_{i}^{\rho_{LS}^{3}} \frac{\rho_{LS}^{3}}{m_{b}^{3}} + \dots$$

• q^2 moments can also be used

[Fael, Mannel, Vos, '18]

Scheme conventions

- Pole mass scheme
 - ⇒ Renormalon ambiguity
 - \Rightarrow Perturbative series is factorially divergent

$$\Gamma_{sl} \sim \sum_k k! \left(\frac{\beta_0}{2} \frac{\alpha_s}{\pi}\right)^k$$

• We choose to use to *b*-quark mass and the non perturbative parameters in the kinetic scheme

[Bigi, Shifman, Uraltsev, Vainshtein]

- \Rightarrow Wilsonian cutoff $\mu = 1 \, \text{GeV}$
- \bullet We express the charm mass in the $\overline{\rm MS}$ scheme

Inclusion of $\mathcal{O}(\alpha_s^3)$ results

[Fael, Schönwald, Steinhauser, '20]

b-quark mass:

$$m_b^{kin}(1\,\text{GeV}) = [4169 + 259_{\alpha_s} + 78_{\alpha_s^2} + 26_{\alpha_s^3}]\,\text{MeV} = (4526 \pm 15)\,\text{MeV}$$

$$\uparrow$$
50% reduction!

Semileptonic width

$$\Rightarrow \mu = 1 \text{ GeV}, \ \mu_b = m_b^{kin}, \ \mu_c = 3 \text{ GeV}$$

$$\Gamma_{sl} = \Gamma_0 f(\rho) \Big[0.9257 - 0.1163_{\alpha_s} - 0.0349_{\alpha_s^2} - 0.0097_{\alpha_s^3} \Big]$$

$$\Rightarrow \mu = 1 \text{ GeV}, \ \mu_b = m_b^{kin}/2, \ \mu_c = 2 \text{ GeV}$$

$$\Gamma_{sl} = \Gamma_0 f(\rho) \Big[0.9257 - 0.1138_{\alpha_s} - 0.0011_{\alpha_s^2} + 0.0104_{\alpha_s^3} \Big]$$

residual uncertainty $\sim 0.5\%$

Residual uncertainty

[MB, Capdevila, Gambino, '21]

• Theory uncertainties are essential for a good fit to data

[Gambino, Schwanda, '14]

- Residual scale dependence
 - \Rightarrow Milder including $\mathcal{O}(\alpha_s^3)$
 - $\Rightarrow~$ We choose $\mu_c=2\,{\rm GeV},~\mu_b=m_b^{kin}/2$ and $\mu=1\,{\rm GeV}$ to minimize scale dependence
- · Other sources of uncertainties e.g. higher power corrections are slightly smaller

Residual uncertainty

• Theory uncertainties are essential for a good fit to data

[Gambino, Schwanda, '14]

- Residual scale dependence
 - \Rightarrow Milder including $\mathcal{O}(\alpha_s^3)$
 - $\Rightarrow~$ We choose $\mu_c=2\,{\rm GeV},~\mu_b=m_b^{kin}/2$ and $\mu=1\,{\rm GeV}$ to minimize scale dependence
- · Other sources of uncertainties e.g. higher power corrections are slightly smaller

1.2% residual uncertainty

The semileptonic fit

m_b^{kin}	$\overline{m}_c(2 \text{GeV})$	μ_{π}^2	$ ho_D^3$	$\mu_g(m_b)$	$ ho_{LS}$	$\mathrm{BR}_{c\ell\nu}$	$10^{3} V_{cb} $
4.573	1.092	0.477	0.185	0.306	-0.130	10.66	42.16
0.012	0.008	0.056	0.031	0.050	0.092	0.15	0.51
							$\overline{}$

- Constraints from FLAG $N_f = 2 + 1 + 1$: $\overline{m}_b = (\overline{m}_b) = 4.198(12) \text{ GeV}$ and $\overline{m}_c = (\overline{m}_c) = 0.988(7) \text{ GeV}$
- No new experimental input wrt to the one in 1411.6560
- The central value of V_{cb} is stable
- Without constraints on m_b , we extract $\bar{m}_b(\bar{m}_b) = 4.210(22) \,\text{GeV}$

The semileptonic fit

m_b^{kin}	$\overline{m}_c(2 \text{GeV})$	μ_{π}^2	$ ho_D^3$	$\mu_g(m_b)$	$ ho_{LS}$	$\mathrm{BR}_{c\ell\nu}$	$10^{3} V_{cb} $
4.573	1.092	0.477	0.185	0.306	-0.130	10.66	42.16
0.012	0.008	0.056	0.031	0.050	0.092	0.15	0.51
							\smallsetminus

- Constraints from FLAG $N_f = 2 + 1 + 1$: $\overline{m}_b = (\overline{m}_b) = 4.198(12) \text{ GeV}$ and $\overline{m}_c = (\overline{m}_c) = 0.988(7) \text{ GeV}$
- No new experimental input wrt to the one in 1411.6560
- The central value of V_{cb} is stable
- Without constraints on m_b , we extract $\bar{m}_b(\bar{m}_b) = 4.210(22) \,\text{GeV}$

$$V_{cb} = 42.16(32)_{exp}(30)_{th}(25)_{\Gamma} \cdot 10^{-3}$$

Higher power corrections

- At $\mathcal{O}(1/m^4)$ the number of operators become large
 - \Rightarrow 9 at dim 7
 - \Rightarrow 18 at dim 8

Lowest Lying State Saturation Approximation:

[Mannel, Turczyk, Uraltsev, '11]

$$\langle B|\mathcal{O}_1\mathcal{O}_2|B\rangle = \sum_n \langle B|\mathcal{O}_1|n\rangle \langle n|\mathcal{O}_2|B\rangle$$

$$\uparrow$$
complete set of states

At dimension 6 the LLSA works well:

$$\rho_D^3 = \epsilon \mu_\pi^2 \qquad \rho_{LS}^3 = -\epsilon \mu_G^2 \qquad \epsilon \sim 0.4 \, \text{GeV}$$

Large corrections to the LLSA are possible

[Gambino, Mannel, Uraltsev, '12]

• 60% gaussian uncertainty on higher order parameters

 $V_{cb} = 42.00(53) \times 10^{-3}$

Inclusive vs. Exclusive

 V_{cb}

- There is a spread between inclusive and exclusive determinations of V_{cb}
- The tension between inclusive and FNAL/MILC accounts to almost $4\sigma!$
- Determination from q^2 moments

[see Keri's talk]

The inclusive B_s width

[MB, Gambino, '21]

• B_d and B_s widths are linked through violation of $SU(3)_F$

$$\frac{\delta_{\mu_G^2} \Gamma_{\rm sl}(B)}{\Gamma_{\rm sl}(B)} = -0.9(1)\% \qquad \frac{\delta_{\mu_G^2} \Gamma_{\rm sl}(B)}{\Gamma_{\rm sl}(B)} = -3.2(5)\%$$
$$\frac{\delta_{\rho_D^3} \Gamma_{\rm sl}(B)}{\Gamma_{\rm sl}(B)} = -3.2(5)\% \qquad \frac{\delta_{\rho_{LS}^3} \Gamma_{\rm sl}(B)}{\Gamma_{\rm sl}(B)} = -0.3(2)\%$$

• Previous studies used sum rules and HQ relations

[Bigi, Mannel, Uraltsev, '11]

- We update those estimates
 - ⇒ Preliminary lattice estimates
 - \Rightarrow Most recent semileptonic fit

$$\frac{\Gamma_{\rm sl}(B_s)}{\Gamma_{\rm sl}(B_d)} - 1 = -(1.8 \pm 0.8)\%\,.$$

[Gambino, Melis, Simula, '17]

The inclusive Λ_b width

- Same arguments as before
- μ_G^2 and ho_{LS}^3 terms vanish for ground state baryons

$$\frac{\delta_{\mu_G^2} \Gamma_{\rm sl}(B) + \delta_{\rho_{LS}^3} \Gamma_{\rm sl}(B)}{\Gamma_{\rm sl}(B)} = -(3.5 \pm 0.6)\%$$

- ⇒ Biggest difference comes from these terms
- \Rightarrow No big numerical changes from previous determinations

$$\frac{\Gamma_{\rm sl}(\Lambda_b)}{\Gamma_{\rm sl}(B_d)} - 1 = (4.1 \pm 1.6)\%,$$

Summary and Prospects

Summary:

- Tension between inclusive and exclusive determination of V_{cb} is not resolved
- New $\mathcal{O}(\alpha_s^3)$ contributions to Γ_{sl} show that
 - \Rightarrow perturbative effects are under control
 - \Rightarrow reduction of the final uncertainty of 1/3
 - \Rightarrow the central value of V_{cb} is stable

Prospects:

- + α_s corrections for the hadronic parameters in the moments
- Lattice calculations for the B_s width are ongoing
- Moments measurements for B_s and Λ_b modes