

HAMMER & EFFORT MICHELE PAPUCCI

BELLE II PHYSICS WEEK, KEK, 1.2.23

NEED FOR REWEIGHING

- Large integrated luminosity requires large MC datasets and time consuming simulations
- ► Exclusive $b \rightarrow c\ell\nu$: need to vary shapes for
 - ► Fitting form factors

▶ ...

- Constraining new physics
- > Propagate information from e,μ modes to τ
- ► Get the "theory updates" on FFs

This has to be done (consistently) among different modes D, D*, D**, non-resonant ...

Reweighing tools are needed → HAMMER & eFFORT

- ► eFFORT: <u>Form Factor Reweighting Tool</u>
- ► A tool to reweigh exclusive $b \rightarrow c\ell\nu$, $b \rightarrow u\ell\nu$ semileptonic decays
- Lightweight, in Python, fast
- ► Used to fit SM exclusive $b \rightarrow c\ell\nu$, $b \rightarrow u\ell\nu$ differential distributions
- ► Used to construct SM $b \rightarrow u\ell \nu$ hybrid MC weights
- Transparent / easy to modify code: good for quick on the fly comparisons
- Standard Model only, works at level of (differential) rates, no taus
- "actively maintained, but developed on demand"

EFFORT V2

- Processes / FF available:
 - ► $B \to D^{(*)} \ell \nu$ w/ CLN, BGL, BLPR(XP)
 - $\succ B \rightarrow \pi \ell \nu \text{ w/ BCL}$
 - ► $B \rightarrow \eta^{(')} \ell \nu$ w/ ISGW2, LCSR

 $\succ B \rightarrow V\ell \nu$:

 $dw d\cos\theta_{\ell} d\cos\theta_{V} d\chi$

- $\succ B \rightarrow P\ell\nu$
- ► $B \rightarrow (\rho, \omega) \ell \nu$ w/BSZ

 $dw d\cos\theta_{\ell}$

 $d^2\Gamma$

(Bernlochner, Duell, Ligeti, MP, Robinson, 2002.00020)

Helicity Amplitude Module for Matrix Element Reweighting

- Reweigh events to "any" form factor parameterization and to SM + New Physics
- Can compute total rates (for BR reweighing)
- > Keeps spin correlations down to D's,π's,γ's
- ➤ Designed to save computational time → fast, can be further optimized
- Internal code is C++. APIs: C++, Python and ROOT "interface"
- Currently three customers: Belle II, LHCb, CMS

HAMMER'S LIBRARY (V. 1.3)

Helicity Amplitude Module for Matrix Element Reweighting

Available Amplitudes & Form Factor parameterizations:

Process	FF parametrizations
$B \to D^{(*)} \ell \nu$	ISGW2* [16, 17], BGL* \ddagger [13–15], CLN* \ddagger [18], BLPR \ddagger [19], BLPRXP \ddagger [20]
$B \to (D^* \to D\pi) \ell \nu$	ISGW2 [*] , BGL ^{*‡} , CLN ^{*‡} , BLPR [‡] , BLPRXP [‡]
$B \to (D^* \to D\gamma) \ell \nu$	ISGW2 [*] , BGL ^{*‡} , CLN ^{*‡} , BLPR [‡] , BLPRXP [‡]
$B o D_0^* \ell \nu$	ISGW2*, LLSW* $[21, 22]$, BLR $\ddagger [23, 24]$
$B o D_1^* \ell \nu$	ISGW2*, LLSW*, BLR ‡
$B \to D_1 \ell \nu$	ISGW2*, LLSW*, BLR ‡
$B o D_2^* \ell \nu$	ISGW2 * , LLSW * , BLR ‡
$B ightarrow (ho ightarrow \pi \pi) \ell u$	ISGW2 * , BSZ $^{\ddagger}\left[25 ight]$
$B \to (\omega \to \pi\pi\pi)\ell\nu$	ISGW2 * , BSZ ‡
$\Lambda_b o \Lambda_c \ell \nu$	$ extsf{PCR}^{st}\left[26 ight]$, $ extsf{BLRS}^{\ddagger}\left[27,\ 28 ight]$
$\Lambda_b o \Lambda_c^* \ell u$	PCR*, LSPR $^{\ddagger}[29,\ 30]$
$B_c \to (J/\psi \to \ell \ell) \ell \nu$	<code>Kiselev*[31]</code> , <code>EFG*[32]</code> , <code>BGL*‡[33]</code> , …
$B \to \pi \ell \nu$	ISGW2*, BCL $^{*\ddagger}\left[34 ight]$, GKvD $\left[35 ight]$
$ au o \pi u$	—
$ au ightarrow \ell u u$	
$\tau \to 3\pi\nu$	RCT* [36–38]
$D_1 ightarrow (D^* ightarrow D\pi/\gamma)\pi$	PW
$D_2^* \to (D^* \to D\pi/\gamma)\pi$	PW
$D_2^* \to D\pi$	PW

 $\ell = e, \mu, \tau$,

$$B=B^0, B^+, B_s$$

Etc.

Other processes / FFs on the way + added upon request

- Compute helicity amplitudes instead of squared matrix elements for general SM+NP (speed: O(n) vs O(n²) terms)
- ► Keep full spin correlation & interference* effects in decays
- Tensorialize amplitudes:

 $\mathcal{M} = \mathcal{M}_{\alpha,i} FF_{\alpha} C_i$

- Compute helicity amplitudes instead of squared matrix elements for general SM+NP (speed: O(n) vs O(n²) terms)
- ► Keep full spin correlation & interference* effects in decays
- Tensorialize amplitudes:

$$\mathcal{M} = \mathcal{M}_{\alpha,i} FF_{\alpha} C_i$$

Event kinematics dependent, FF parameterization & NP independent

- Compute helicity amplitudes instead of squared matrix elements for general SM+NP (speed: O(n) vs O(n²) terms)
- ► Keep full spin correlation & interference* effects in decays
- Tensorialize amplitudes:

 $\mathcal{M} = \mathcal{M}_{\alpha,i} FF_{\alpha} C_i$

Event kinematics dependent, FF parameterization & NP independent q^2 & FF param. dependent, NP independent can be further expanded in (linearized) uncertainties/parameters: $FF_{\alpha}(q^2, \vec{a}) = FF_{\alpha,\lambda}(q^2, \vec{a}_0)\delta a_{\lambda}$, with δa_{λ}

event independent

- Compute helicity amplitudes instead of squared matrix elements for general SM+NP (speed: O(n) vs O(n²) terms)
- ► Keep full spin correlation & interference* effects in decays

 $\mathcal{M} = \mathcal{M}_{\alpha,i} FF_{\alpha} C_i$

Tensorialize amplitudes:

Event independent, NP dependent

Event kinematics dependent, FF parameterization & NP independent q^2 & FF param. dependent, NP independent can be further expanded in (linearized) uncertainties/parameters: $FF(a^2 \vec{a}) = FF(a^2 \vec{a})\delta a$, with δa .

 $FF_{\alpha}(q^2, \vec{a}) = FF_{\alpha,\lambda}(q^2, \vec{a}_0)\delta a_{\lambda}$, with δa_{λ} event independent

- Compute helicity amplitudes instead of squared matrix elements for general SM+NP (speed: O(n) vs O(n²) terms)
- ► Keep full spin correlation & interference* effects in decays

 C_i are NP Wilson Coefficients, $C_i = (1, V_{LL}, V_{RL}, V_{RL}, V_{RR}, S_{LL}, S_{RL}, S_{LR}, S_{RR}, T_{LL}, T_{RR})$ $FF_{\alpha,\lambda}$ are central value and gradient w.r.t. to parameters, $\delta a_{\lambda} = (1, \overline{\delta a})$ (e.g. coefficients of Taylor expansions of IW functions, BGL parameters, ...)

Helicity Amplitude Module for Matrix Element Reweighting

► Squared matrix element is

$$M^{2} = \left(C_{i}C_{i'}^{\dagger}\right) \left(\delta a_{\lambda}\delta a_{\lambda'}\right) \left(FF_{\alpha,\lambda}FF_{\alpha',\lambda'}^{\dagger}\right) \left(\mathscr{M}_{\alpha,i}\mathscr{M}_{\alpha',i'}^{\dagger}\right)$$

> Scalar event weight is $W = M_{new}^2 / M_{old}^2$

Define NP-independent, FF-independent tensor event weight

$$\mathcal{W}_{\alpha\alpha',ii'} = \left(\mathcal{M}_{\alpha,i}\mathcal{M}_{\alpha',i'}^{\dagger}\right) / M_{old}^{2}$$

- ► Pre-compute once & store $\mathscr{W}_{\alpha\alpha',ii'}$, $FF_{\alpha,\lambda}$ (and/or $\mathscr{W}_{\lambda\lambda',ii'}$) (per event, using truth level 4-momenta; data format will always be backward compatible)
- Scalar weight W for a given choice of C_i, δa_λ can then be retrieved from simple (and fast) dot products
- Same philosophy for tensor decay rates: $\Gamma_{\lambda\lambda',ii'}/\Gamma_{old}$ (necessary for e.g. reweighing branching ratios)

Helicity Amplitude Module for Matrix Element Reweighting

► Squared matrix element is

 $M^{2} = \left(C_{i}C_{i'}^{\dagger}\right) \left(\delta a_{\lambda}\delta a_{\lambda'}\right) \left(FF_{\alpha,\lambda}FF_{\alpha',\lambda'}^{\dagger}\right) \left(\mathscr{M}_{\alpha,i}\mathscr{M}_{\alpha',i'}^{\dagger}\right)$

NP & FF-independent

- > Scalar event weight is $W = M_{new}^2 / M_{old}^2$
- Define NP-independent, FF-independent tensor event weight

$$\mathcal{W}_{\alpha\alpha',ii'} = \left(\mathcal{M}_{\alpha,i}\mathcal{M}_{\alpha',i'}^{\dagger}\right) / M_{old}^{2}$$

- ► Pre-compute once & store $\mathscr{W}_{\alpha\alpha',ii'}$, $FF_{\alpha,\lambda}$ (and/or $\mathscr{W}_{\lambda\lambda',ii'}$) (per event, using truth level 4-momenta; data format will always be backward compatible)
- Scalar weight W for a given choice of C_i, δa_λ can then be retrieved from simple (and fast) dot products
- Same philosophy for tensor decay rates: $\Gamma_{\lambda\lambda',ii'}/\Gamma_{old}$ (necessary for e.g. reweighing branching ratios)

Helicity Amplitude Module for Matrix Element Reweighting

► Squared matrix element is

FF parameterizations

$$M^{2} = \left(C_{i}C_{i'}^{\dagger}\right) \left(\delta a_{\lambda}\delta a_{\lambda'}\right) \left(FF_{\alpha,\lambda}FF_{\alpha',\lambda'}^{\dagger}\right) \left(\mathscr{M}_{\alpha,i}\mathscr{M}_{\alpha',i'}^{\dagger}\right)$$

NP & FF-independent

- > Scalar event weight is $W = M_{new}^2 / M_{old}^2$
- Define NP-independent, FF-independent tensor event weight

$$\mathcal{W}_{\alpha\alpha',ii'} = \left(\mathcal{M}_{\alpha,i}\mathcal{M}_{\alpha',i'}^{\dagger}\right) / M_{old}^{2}$$

- ► Pre-compute once & store $\mathscr{W}_{\alpha\alpha',ii'}$, $FF_{\alpha,\lambda}$ (and/or $\mathscr{W}_{\lambda\lambda',ii'}$) (per event, using truth level 4-momenta; data format will always be backward compatible)
- Scalar weight W for a given choice of C_i, δa_λ can then be retrieved from simple (and fast) dot products
- Same philosophy for tensor decay rates: $\Gamma_{\lambda\lambda',ii'}/\Gamma_{old}$ (necessary for e.g. reweighing branching ratios)

Helicity Amplitude Module for Matrix Element Reweighting

► Squared matrix element is

FF parameterizations

$$M^{2} = \left(C_{i}C_{i'}^{\dagger}\right) \left(\delta a_{\lambda}\delta a_{\lambda'}\right) \left(FF_{\alpha,\lambda}FF_{\alpha',\lambda'}^{\dagger}\right) \left(\mathcal{M}_{\alpha,i}\mathcal{M}_{\alpha',i'}^{\dagger}\right)$$

FF uncert'
NP & FF-independent

> Scalar event weight is $W = M_{new}^2 / M_{old}^2$

Define NP-independent, FF-independent tensor event weight

$$\mathcal{W}_{\alpha\alpha',ii'} = \left(\mathcal{M}_{\alpha,i}\mathcal{M}_{\alpha',i'}^{\dagger}\right) / M_{old}^{2}$$

- ► Pre-compute once & store $\mathscr{W}_{\alpha\alpha',ii'}$, $FF_{\alpha,\lambda}$ (and/or $\mathscr{W}_{\lambda\lambda',ii'}$) (per event, using truth level 4-momenta; data format will always be backward compatible)
- Scalar weight W for a given choice of C_i, δa_λ can then be retrieved from simple (and fast) dot products
- Same philosophy for tensor decay rates: $\Gamma_{\lambda\lambda',ii'}/\Gamma_{old}$ (necessary for e.g. reweighing branching ratios)

Helicity Amplitude Module for Matrix Element Reweighting

► Squared matrix element is

FF parameterizations $M^{2} = \left(C_{i}C_{i'}^{\dagger}\right) \left(\delta a_{\lambda}\delta a_{\lambda'}\right) \left(FF_{\alpha,\lambda}FF_{\alpha',\lambda'}^{\dagger}\right) \left(\mathcal{M}_{\alpha,i}\mathcal{M}_{\alpha',i'}^{\dagger}\right)$

NP & FF-independent

- Scalar event weight is $W = M_{new}^2 / M_{old}^2$
- Define NP-independent, FF-independent tensor event weight

$$\mathcal{W}_{\alpha\alpha',ii'} = \left(\mathcal{M}_{\alpha,i}\mathcal{M}_{\alpha',i'}^{\dagger}\right)/M_{old}^{2}$$

- ► Pre-compute once & store $\mathscr{W}_{\alpha\alpha',ii'}$, $FF_{\alpha,\lambda}$ (and/or $\mathscr{W}_{\lambda\lambda',ii'}$) (per event, using truth level 4-momenta; data format will always be backward compatible)
- Scalar weight W for a given choice of C_i, δa_λ can then be retrieved from simple (and fast) dot products
- Same philosophy for tensor decay rates: $\Gamma_{\lambda\lambda',ii'}/\Gamma_{old}$ (necessary for e.g. reweighing branching ratios)

Event reweighing alone brings you only so far:

 $N_{weights} \sim N_{events} * (N_{variations})^{D}$ Weight tensorialization helps here Still very large

- Large number of computations for large statistics samples
- ► For binned analyses further help is possible: Tensor histograms!
 - Bin tensors directly (weights and squared weights) and collapse to conventional histogram at the end when contracting with external vectors

► Trade $N_{events} \rightarrow N_{bins}$, space for speed

Helicity Amplitude Module for Matrix Element Reweighting

HAMMER'S IDEA

WHAT'S NEXT?

AKA: what do you really need from us?

NEAR FUTURE DIRECTIONS

- ► Improving the modeling of the "X" in $B \to D^{(*)} \ell \nu X$:
 - Theoretical work needed is in progress
 - On-shell vs off-shell resonance heavy meson form factors (two independent approaches ongoing see Florian's talk)
 - ► Goal is to get to modeling $B \to D^{(*)} \ell \nu \pi (+\pi)$ in terms of
 - Form factors of known resonances defined "on the pole" controlling their contributions (on-shell and off-shell)
 - ► "UV" non-resonant contribution parameterized by another form factor suppressed by $v^{(')} \cdot p_{\pi} / \Lambda$, with $\Lambda \sim 1$ GeV
 - A bunch of hadronic coupling constants controlling interactions of pions (and η, ρ) with D,D*,D** (need to be measured)
 - ➤ "Cocktail" model based on EFT (chiral and heavy quark symmetries) → in principle systematically improvable (although # parameters may get out of hand quickly...)

- ► $B \rightarrow D^{(*)} \ell \nu \pi (+\pi)$ modeling will be added into HAMMER \rightarrow can use independently of how MC samples were generated (as long as they cover phase space)
- ► HAMMER implementation \rightarrow v2.0:
 - Will require some code restructuring (but no backward compatibility breaks)
 - Tackling interference between different D** requires some "plumbing" work to maintain performance
 - Bonus: this code restructuring will also improve performance for scans on a reduced set of parameters (Wilson coeffs, Form Factor params). Already a feature request

NEAR FUTURE DIRECTIONS

- ► Radiative semileptonic $B \rightarrow D^{(*)}\ell\nu + \gamma$
 - Current HAMMER procedure: use the 4-momenta before γ radiation by "undoing" PHOTOS emissions
 - Plan to transition to different model:
 - Don't undo PHOTOS but reweigh 0y, 1y, ... with QED corrected amplitudes
 - Go beyond soft photon approx and include structure dependent contributions: 4 unknown functions, constrained by HQET (MP Wise Trickle 2110.13154)
 - Only Belle II can measure γ spectra (with enough statistics)
 Test of HQET in different regime (+ help for LHCb)

WHAT ELSE?

- Is there something that you would like to do with HAMMER but cannot be presently done?
- Processes? Form Factors? Decay Modes?
- Is the current API sufficient for integration in Belle II software framework?
- Is there a need for more programmatic access to tensor histograms?
- Specific performance issues needing improvement?

(We can always be reached at hammer-support@lbl.gov)