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๏ Lecture I

‣  Flavor of the Standard Model

‣  Weak decays: Effective Theory: Operator Product Expansion

๏ Lecture II

‣  Form factor, Penguin decays

‣  SMEFT, Minimal Flavor Violation

๏ Lecture III

hep-ph/980647 
review by A. J. Buras 

Gauge theories of 
weak decays 

 book by A. J. Buras 
 

‣  Current tensions 

‣  Flavor Model with BSM physics
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Aim of the lectures: to get familiar with the methods  

and terms used in theory
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The Standard Model
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Gauge structure of the SM of Particle Physics

SU(3)c × SU(2)L × U(1)Y
strong: color 

weak: isospin hypercharge

: mediators



Lagrangian
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ℒkin = ψ̄iDψ − 1
4 FμνFμν + (DμΦ)†(DμΦ) ψ = {eR, L, uR, dR, Q}

Fμν = {Ga
μν, Wa

μν, Bμν}
Fermion-gauge  
boson interaction

Higgs-gauge 
boson interaction

ℒYuk = − Q̄ΦYDdR − Q̄ΦcYUuR − L̄ΦYEeR Higgs-fermion interaction

3 x 3 Yukawa matrices: flavour dynamics
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ℒkin = ψ̄iDψ − 1
4 FμνFμν + (DμΦ)†(DμΦ) ψ = {eR, L, uR, dR, Q}

Fμν = {Ga
μν, Wa

μν, Bμν}
Fermion-gauge  
boson interaction

Higgs-gauge 
boson interaction

ℒYuk = − Q̄ΦYDdR − Q̄ΦcYUuR − L̄ΦYEeR Higgs-fermion interaction

3 x 3 Yukawa matrices: flavour dynamics
No Yukawa for neutrinos massless in SM

SU(2)L × U(1)Y
SSB U(1)EM

[Courtesy: CERN document server]

V(Φ) = − μ2 |Φ |2 + λ |Φ |4

Massive gauge bosons:W±, Z



Flavor sector
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for fermions are invariant under ℒkin

Vu,d,e
L,R :3x3 unitary matrices

[U(3)]5ℒYuk breaks [U(1)]4

[U(3)]5

Baryon no. B
& 3 lepton family nos. Le,μ,τ
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for fermions are invariant under ℒkin

Vu,d,e
L,R :3x3 unitary matrices

[U(3)]5ℒYuk breaks [U(1)]4

[U(3)]5

Baryon no. B
& 3 lepton family nos.

Can we use flavour symmetry to diagonalise all Yukawa matrices?

bi-unitary transformation

But only 3 matrices are available in quark sector:      missingVd
L

ℒYuk =

non-diagonal Extra rotation for d-type quarks

Le,μ,τ



Flavor sector
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dL → d′ L = (Vu
L)†Vd

LdL ≡ VCKM dL
Vcb

Vtb

Vub

Vcd

Vtd

Vud

Vcs

Vts

Vus

Mass basis All Yukawa matrices are diagonal
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dL → d′ L = (Vu
L)†Vd

LdL ≡ VCKM dL
Vcb

Vtb

Vub

Vcd

Vtd

Vud

Vcs

Vts

Vus

Mass basis All Yukawa matrices are diagonal

Where do we see the effect of CKM rotation?

Kinetic term: f̄iDf

Vμ = {Gμ, Zμ, Aμ}
neutral gauge bosons

No flavor changing neutral current@tree level

b
t

sW

γ
possible at loop level



Flavor sector
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∑
j−1,2,3

ūjγμPLdjW+
μ ⟶ ∑

j,k−1,2,3
ūjγμPLVjkdkW+

μ = ūγμVCKMPLdW+
μ

flavor violation generated in gauge interaction via Yukawa  
interactions in mass basis

Charged current:
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∑
j−1,2,3

ūjγμPLdjW+
μ ⟶ ∑

j,k−1,2,3
ūjγμPLVjkdkW+

μ = ūγμVCKMPLdW+
μ

General parametrization of 3x3 unitary matrix 3 angles + 6 phases

Not all phases physical—5 are rotated away

3 angles + 1 phases
only source  
of CP violation

sij = sin θij
cij = cos θij

Charged current:

flavor violation generated in gauge interaction via Yukawa  
interactions in mass basis



Weak decays of muons
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e

μ

ν̄e

νμ

amplitude=

k2 ≪ M2
W is good approximation as mμ ≪ MW e

μ
ν̄e

νμ

matching with Fermi theory with 4-point effective interaction

decay width of muonBR(μ → eνμν̄e) ∼ 100 %
used to evaluate GF



Weak decays of muons
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e

μ

ν̄e

νμ τtheo
μ = 2.18776 × 10−6 s

τexpt
μ = 2.1969811(22) × 10−6 s

@LO with phase  
space factor

very closely in 
agreement 
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e

μ

ν̄e

νμ

e

μ

ν̄e

νμ

τtheo
μ = 2.18776 × 10−6 s

τexpt
μ = 2.1969811(22) × 10−6 s

Including electro-weak corrections

τtheo
μ = 2.19699 × 10−6 s

τexpt
μ = 2.1969811(22) × 10−6 s

in perfect 
agreement 

@LO with phase  
space factor

very closely in 
agreement 



Weak decays of tau
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Total decay width of fermion Γtot
f =

G2
Fm5

f

192π3 [f(mf′ /mf ) + ⋯]
phase space + higher order in αEM

τ
ν̄e, ν̄μ

ντ

e, μ

τ
ū
ντ

d, s
π, K

QED effects under control but not QCD

τtheo
τ = 3.26707 × 10−13 s

τexpt
τ = 2.906(1) × 10−13 s

Gluon exchange within quarks

Tau decay is used to evaluate — strong coupling constantαs

BR~35% BR~35%



Wide range of theory 
predictions for

Weak decays of quarks
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ν̄ℓ
ℓ

ū, c̄

b

τtheo
b

τexpt
b

b u

d, s

Total decay width Γtot
f =

G2
Fm5

f

192π3 [f(mf′ /mf ) + ⋯]
heavy quark masses enter 
— depend on scheme

@  — differs fromm̄c,b(m̄b)τtheo
b = 2.60 × 10−15 ps

u



Loops
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Actual physics lies in loops! Accuracy check of tree level & 
validity of perturbation theory

Several decays start@1-loop

Divergent pieces  
in loop integrals Renormalization
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Actual physics lies in loops! Accuracy check of tree level & 
validity of perturbation theory

Several decays start@1-loop

Divergent pieces  
in loop integrals Renormalization

Large Logarithms
αs(mb)ln(m2

b /μ2)
Resummation with RG equations

 energy scale  
induced

Leading 
Log

Next-to 
leading 

Log
NNLL

Tree
1-loop

2-loop

αs ln
α2

s ln2

αs

α2
s ln α2

s

1

0.2 × 1.3



OPE
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Weak decays of quarks involve different scales
μ = -(MW) fundamental scale of weak interaction— small αs

-(1 GeV) ≤ μ ≤ MW
αs variation is significant 

resummation of large Logs necessary 
μ ≤ -(1 GeV) confinement effects has to be included
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Weak decays of quarks involve different scales
μ = -(MW) fundamental scale of weak interaction— small αs

-(1 GeV) ≤ μ ≤ MW
αs variation is significant 

resummation of large Logs necessary 
μ ≤ -(1 GeV) confinement effects has to be included

sc

d
ū

sc

d
ū

X

X

An example:

( f̄ f )V−A ≡ f̄γμ(1 − γ5)f



OPE
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sc

d
ū

X

X
ℋeff = GF

2
V*csVud C1 + higher D ; 1 ≡ (s̄c)V−A(ūd)V−A

product of two currents expanded in series of local 
operators weighted by effective coupling constants— 
Wilson coefficients C

C=1 altered by QCD corrections + new operators induced

different colour structure



OPE
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Amplitude of full theory should match with the amplitude produced 
from effective theory Hamiltonian matching condition

Divergent pole can be absorbed  
in field redefinition tree level matrix element



Matrix element
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divergences in 1st two 
terms absorbed in field 
renormalization.

More divergent than full theory— 
effective theory is nonrenormalizable

need additional constants  
—operator renormalization



Matrix element
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^

Quark field renormalization Operator renormalization

Renormalized operators:



Wilson coefficients
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Matching between full and EFT amplitudes gives

Operator renormalization similar to coupling constant renormalization 
if Wilson coefficients are thought as bare coupling constants in ℋeff

C1(MW) = 0, C2(MW) = 1remember when NO QCD:



Wilson coefficients
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Matching between full and EFT amplitudes gives

Operator renormalization similar to coupling constant renormalization 
if Wilson coefficients are thought as bare coupling constants in ℋeff

C1(MW) = 0, C2(MW) = 1remember when NO QCD:

Factorisation of  
energy scales@ -(αs)

full theory= matrix element 
(long distance)

WC 
(short distance)



Wilson coefficients
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dropped from the expressions  
— need to be careful while regularising infrared divergences

p2

4%

Total 1st order correction amounts 60-130%

μ = 1 GeVLarge log

Naive breakdown of perturbative series

 WCs are independent of external states

 Operators mix under renormalization:  is non-diagonal̂Z
Counter term for      depends on the constants for both 12 & 1112

diagonal basis:



Wilson coefficients
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Resum large logs via RG eqn:

anomalous dimension 
depends on renormalization constants

1
In RG improved perturbation theory:

@b-mass scale

departure from the value 1 due to QCD 

Similar to  
running of αs

≈



Prescription
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 Step-1: Matching in perturbation theory
amplitude in full theory matched to operator matrix element in  
effective theory extraction of WCs Ci(Λ)

mass of heavy  
particles integrated out 
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 Step-1: Matching in perturbation theory
amplitude in full theory matched to operator matrix element in  
effective theory extraction of WCs Ci(Λ)

mass of heavy  
particles integrated out 

 Step-2: RG improved perturbation theory

using anomalous dimension of operators compute WCs at any lower  
scale via RG evolution Ci(μ) = U(μ, Λ)Ci(Λ)
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 Step-1: Matching in perturbation theory
amplitude in full theory matched to operator matrix element in  
effective theory extraction of WCs Ci(Λ)

mass of heavy  
particles integrated out 

 Step-2: RG improved perturbation theory

using anomalous dimension of operators compute WCs at any lower  
scale via RG evolution Ci(μ) = U(μ, Λ)Ci(Λ)

 Step-3: Non-perturbative calculation 

hadronic matrix elements at the lower scale via methods:  
Lattice gauge theory, QCD sum rules

factorization between short & long distance physics

< μ : ⟨1(μ)⟩Ci(μ) : μ >
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