Flavor Physics

Rusa Mandal IIT Gandhinagar, India

Belle II Physics Week@KEK Tsukuba

October 30, 2023

Outline

- Lecture I
 - Flavor of the Standard Model
 - Weak decays: Effective Theory: Operator Product Expansion
- Lecture II
 - Form factor, Penguin decays
 - Current tensions
- Lecture III
 - SMEFT, Minimal Flavor Violation
 - Flavor Model with BSM physics

hep-ph/980647
 review by A. J. Buras

 Gauge theories of weak decays
 book by A. J. Buras

Aim of the lectures: to get familiar with the methods

and terms used in theory

Rusa Mandal, IIT Gandhinagar

The Standard Model

Gauge structure of the SM of Particle Physics

strong: color
$$\checkmark$$
 $SU(3)_c \times SU(2)_L \times U(1)_Y$
weak: isospin hypercharge

Fermions: three generations			$SU(3)_C$	$SU(2)_L$	$U(1)_Y$
e_R	μ_R	$ au_R$	1	1	-1
$L_1 = (v_e, e_L)^\top$	$L_2 = \left(\nu_{\mu}, \mu_L\right)^{T}$	$L_3 = (\nu_\tau, \tau_L)^\top$	1	2	$-\frac{1}{2}$
<i>u</i> _R	C _R	t_R	3	1	$\frac{2}{3}$
d_R	S _R	b_R	3	1	$-\frac{1}{3}$
$Q_1 = (u_L, d_L)^\top$	$Q_2 = (c_L, s_L)^\top$	$Q_3 = (t_L, b_L)^{\top}$	3	2	$\frac{1}{6}$
Gauge bosons: mediators					
	G^a_μ	a = 1 - 8	8	1	0
	W^{a}_{μ}	a = 1, 2, 3	1	3	0
	B_{μ}		1	1	0
	Higgs				
	$\Phi = \left(\phi^+, \phi^0\right)^\top$		1	2	$\frac{1}{2}$

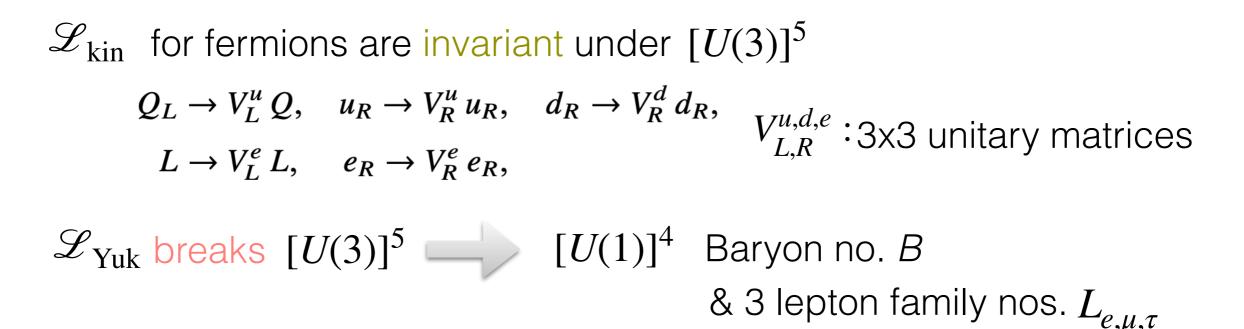
Lagrangian

3 x 3 Yukawa matrices: flavour dynamics

Lagrangian

$$\begin{aligned} \mathscr{L}_{\text{kin}} &= \bar{\psi} i \not{D} \psi - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} + (D^{\mu} \Phi)^{\dagger} (D_{\mu} \Phi) & \psi = \{e_{R}, L, u_{R}, d_{R}, Q\} \\ \text{Fermion-gauge} & \text{Higgs-gauge} \\ \text{boson interaction} & \text{Higgs-gauge} \\ \mathcal{L}_{\text{Yuk}} &= - \bar{Q} \Phi Y_{D} d_{R} - \bar{Q} \Phi^{c} Y_{U} u_{R} - \bar{L} \Phi Y_{E} e_{R} & \text{Higgs-fermion interaction} \\ \mathscr{L}_{\text{Yuk}} &= - \bar{Q} \Phi Y_{D} d_{R} - \bar{Q} \Phi^{c} Y_{U} u_{R} - \bar{L} \Phi Y_{E} e_{R} & \text{Higgs-fermion interaction} \\ \mathcal{L}_{\text{Yuk}} &= - \bar{Q} \Phi Y_{D} d_{R} - \bar{Q} \Phi^{c} Y_{U} u_{R} - \bar{L} \Phi Y_{E} e_{R} & \text{Higgs-fermion interaction} \\ \mathcal{L}_{\text{Yuk}} &= - \bar{Q} \Phi Y_{D} d_{R} - \bar{Q} \Phi^{c} Y_{U} u_{R} - \bar{L} \Phi Y_{E} e_{R} & \text{Higgs-fermion interaction} \\ \mathcal{L}_{\text{Yuk}} &= - \bar{Q} \Phi Y_{D} d_{R} - \bar{Q} \Phi^{c} Y_{U} u_{R} - \bar{L} \Phi Y_{E} e_{R} & \text{Higgs-fermion interaction} \\ \mathcal{L}_{\text{Yuk}} &= - \bar{Q} \Phi^{c} Y_{D} d_{R} - \bar{Q} \Phi^{c} Y_{U} u_{R} - \bar{L} \Phi Y_{E} e_{R} & \text{Higgs-fermion interaction} \\ \mathcal{L}_{\text{Yuk}} &= - \bar{Q} \Phi^{c} Y_{D} d_{R} - \bar{Q} \Phi^{c} Y_{U} u_{R} - \bar{L} \Phi Y_{E} e_{R} & \text{Higgs-fermion interaction} \\ \mathcal{L}_{\text{Yuk}} &= - \bar{Q} \Phi^{c} Y_{D} d_{R} - \bar{Q} \Phi^{c} Y_{U} u_{R} - \bar{L} \Phi Y_{E} e_{R} & \text{Higgs-fermion interaction} \\ \mathcal{L}_{\text{Yuk}} &= - \bar{Q} \Phi^{c} Y_{D} d_{R} - \bar{Q} \Phi^{c} Y_{U} u_{R} - \bar{L} \Phi Y_{E} e_{R} & \text{Higgs-fermion interaction} \\ \mathcal{L}_{\text{Yuk}} &= - \bar{Q} \Phi^{c} Y_{D} d_{R} - \bar{Q} \Phi^{c} Y_{U} u_{R} - \bar{L} \Phi Y_{E} e_{R} & \text{Higgs-fermion interaction} \\ \mathcal{L}_{\text{Yuk}} &= - \bar{Q} \Phi^{c} Y_{D} d_{R} - \bar{Q} \Phi^{c} Y_{U} u_{R} - \bar{L} \Phi Y_{E} e_{R} & \text{Higgs-fermion interaction} \\ \mathcal{L}_{\text{Yuk}} &= - \bar{Q} \Phi^{c} Y_{D} d_{R} - \bar{Q} \Phi^{c} Y_{U} u_{R} - \bar{Q} \Phi^{c} Y_{U} u_$$

```
[Courtesy: CERN document server]
```



Rusa Mandal, IIT Gandhinagar

$$\begin{aligned} \mathscr{L}_{\text{kin}} & \text{ for fermions are invariant under } [U(3)]^5 \\ Q_L \to V_L^u Q, \quad u_R \to V_R^u u_R, \quad d_R \to V_R^d d_R, \quad V_{L,R}^{u,d,e} : 3 \times 3 \text{ unitary matrices} \\ L \to V_L^e L, \quad e_R \to V_R^e e_R, \end{aligned}$$

Can we use flavour symmetry to diagonalise all Yukawa matrices? bi-unitary transformation $(V_L^d)^{\dagger} Y^D V_R^d = \hat{Y}^D$, $(V_L^u)^{\dagger} Y^U V_R^u = \hat{Y}^U$, $(V_L^e)^{\dagger} Y^E V_R^e = \hat{Y}^E$.

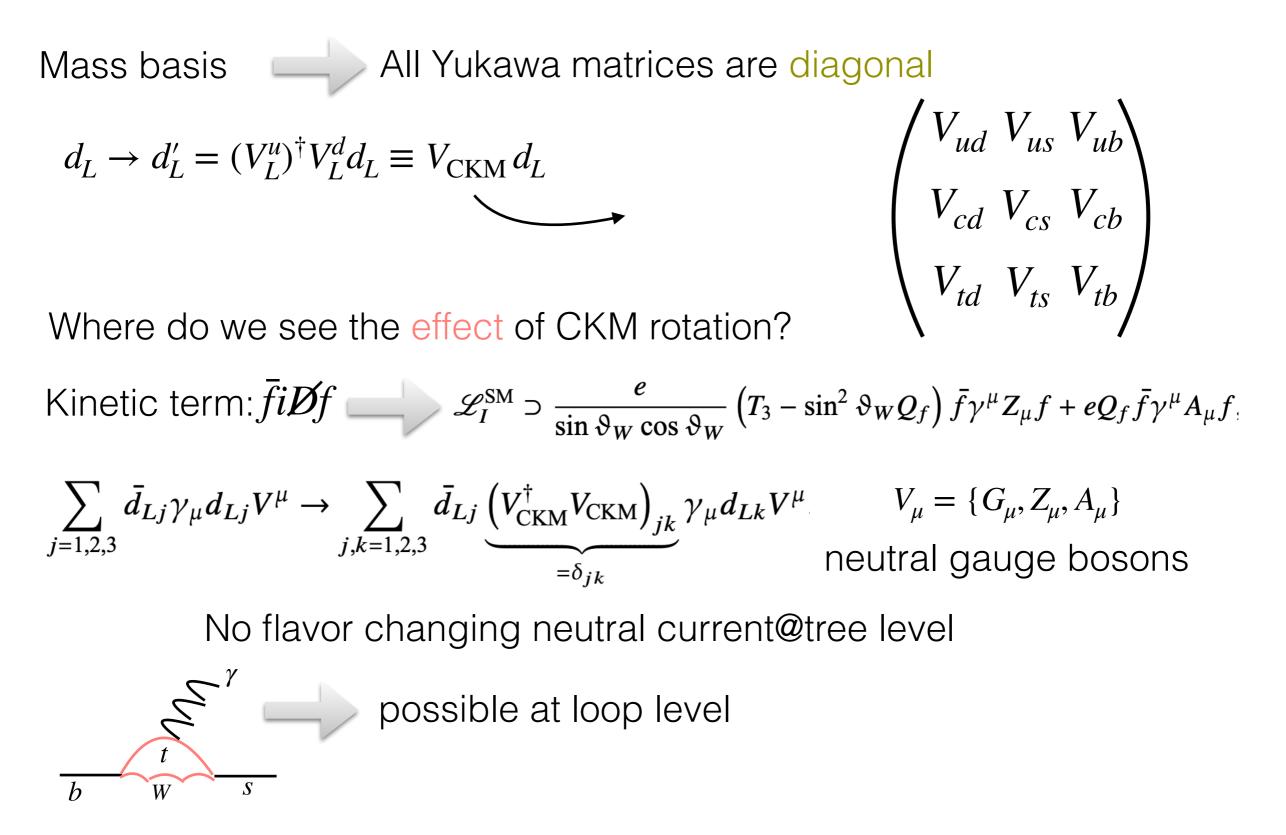
But only 3 matrices are available in quark sector: V_L^d missing

$$\begin{aligned} \mathscr{L}_{Yuk} = -\bar{Q}\Phi(V_L^u)^{\dagger}V_L^d\hat{\gamma}^D d_R - \bar{Q}\Phi^c\hat{\gamma}^U u_R - \bar{L}\Phi\hat{\gamma}^E e_R \\ \swarrow \end{aligned}$$
non-diagonal Extra rotation for *d*-type quarks

Mass basis All Yukawa matrices are diagonal

$$d_L \to d'_L = (V_L^u)^{\dagger} V_L^d d_L \equiv V_{\text{CKM}} d_L$$

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$



Charged current: $\sum_{j=1,2,3} \bar{u}_j \gamma^{\mu} P_L d_j W^+_{\mu} \longrightarrow \sum_{j,k=1,2,3} \bar{u}_j \gamma^{\mu} P_L V_{jk} d_k W^+_{\mu} = \bar{u} \gamma^{\mu} V_{CKM} P_L dW^+_{\mu}$

flavor violation generated in gauge interaction via Yukawa interactions in mass basis

Charged current:
$$\sum_{j=1,2,3} \bar{u}_j \gamma^{\mu} P_L d_j W^+_{\mu} \longrightarrow \sum_{j,k=1,2,3} \bar{u}_j \gamma^{\mu} P_L V_{jk} d_k W^+_{\mu} = \bar{u} \gamma^{\mu} V_{CKM} P_L dW^+_{\mu}$$

flavor violation generated in gauge interaction via Yukawa interactions in mass basis

General parametrization of 3x3 unitary matrix 3 angles + 6 phases Not all phases physical—5 are rotated away $u_j^{L,R} \rightarrow e^{i\varphi_j^u}u_j^{L,R}$, $d_j^{L,R} \rightarrow e^{i\varphi_j^d}d_j^{L,R}$ $V_{ij}^{CKM} \rightarrow e^{i(\varphi_j^d - \varphi_i^u)}V_{ij}^{CKM}$ 3 angles + 1 phases $V_{CKM} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} s_{ij} = \sin \theta_{ij}$ $c_{ij} = \cos \theta_{ij}$

Weak decays of muons

$$\frac{W}{\mu} = -\frac{1}{8} \frac{g_2^2}{k^2 - M_W^2} [\bar{\nu}_{\mu} \gamma_{\mu} (1 - \gamma_5) \mu] [\bar{e} \gamma^{\mu} (1 - \gamma_5) \nu_e],$$

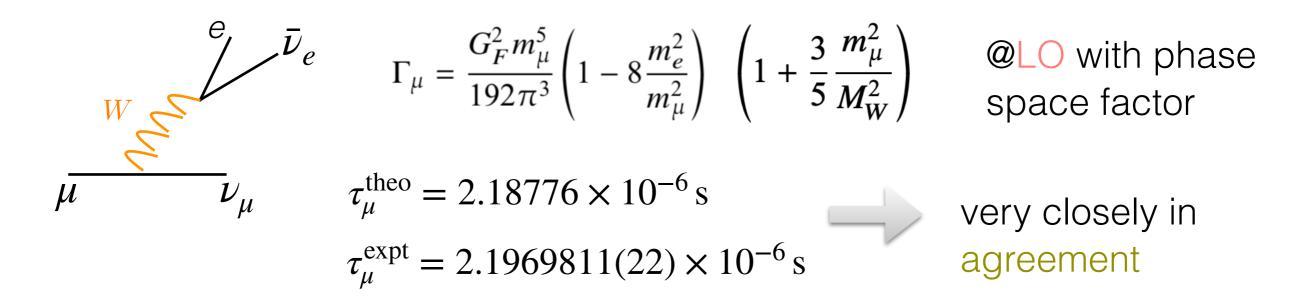
$$k^2 \ll M_W^2 \text{ is good approximation as } m_{\mu} \ll M_W \stackrel{e}{\longrightarrow} \frac{\bar{\nu}_e}{\sqrt{2}} [\bar{\nu}_{\mu} \gamma_{\mu} (1 - \gamma_5) \mu] [\bar{e} \gamma^{\mu} (1 - \gamma_5) \nu_e],$$

$$\frac{G_F}{\sqrt{2}} [\bar{\nu}_{\mu} \gamma_{\mu} (1 - \gamma_5) \mu] [\bar{e} \gamma^{\mu} (1 - \gamma_5) \nu_e],$$

matching with Fermi theory with 4-point effective interaction $\frac{G_F}{\sqrt{2}} = \frac{g_2^2}{8M_W^2}$

$$\label{eq:BR} \begin{split} \mathrm{BR}(\mu \to e \nu_\mu \bar{\nu}_e) \sim 100 \,\% & \longrightarrow & \mathrm{decay} \ \mathrm{width} \ \mathrm{of} \ \mathrm{muon} \\ & \mathrm{used} \ \mathrm{to} \ \mathrm{evaluate} \ G_F \end{split}$$

Weak decays of muons



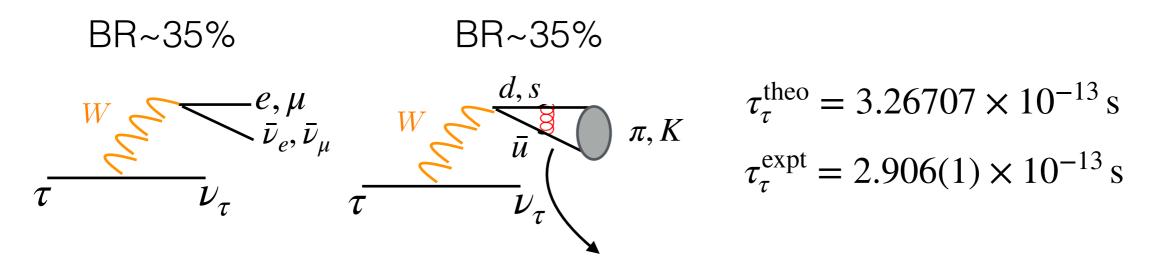
Weak decays of muons

$$\begin{array}{ccc}
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

Including electro-weak corrections

Weak decays of tau

Total decay width of fermion $\Gamma_f^{\text{tot}} = \frac{G_F^2 m_f^5}{192\pi^3} \left[f(m_{f'}/m_f) + \cdots \right]$ phase space + higher order in α_{EM}

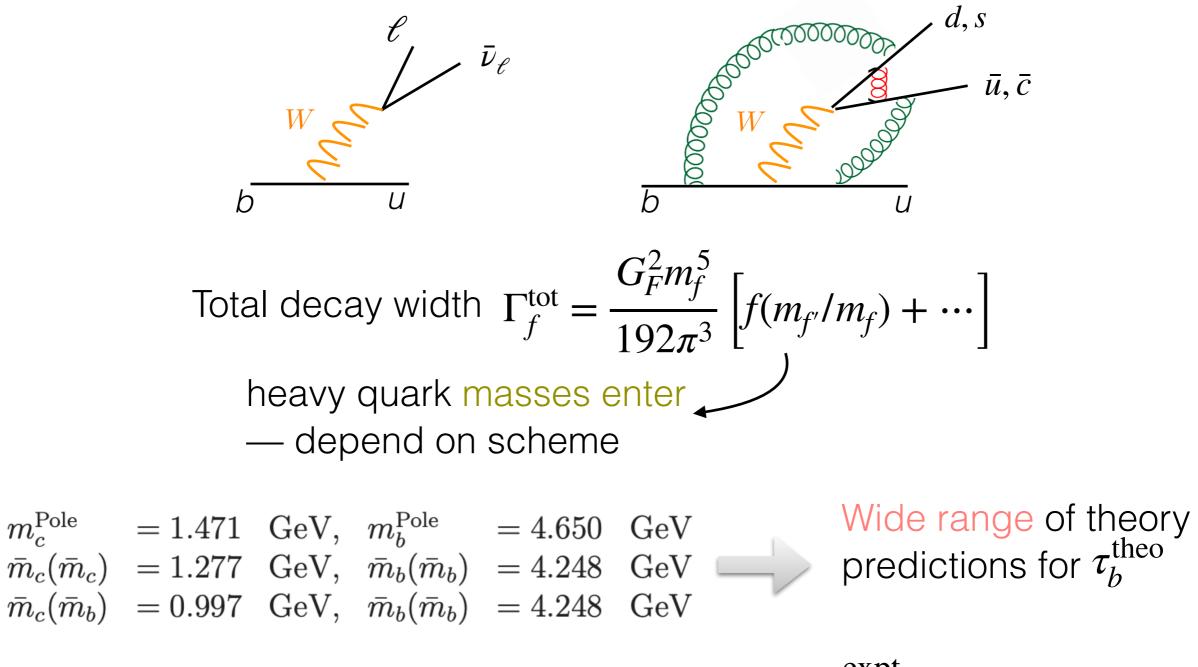


Gluon exchange within quarks

QED effects under control but not QCD

Tau decay is used to evaluate α_s — strong coupling constant

Weak decays of quarks



 $\tau_b^{\text{theo}} = 2.60 \times 10^{-15} \,\text{ps} \ @\bar{m}_{c,b}(\bar{m}_b) - \text{differs from} \ \tau_b^{\text{expt}}$

Actual physics lies in loops!

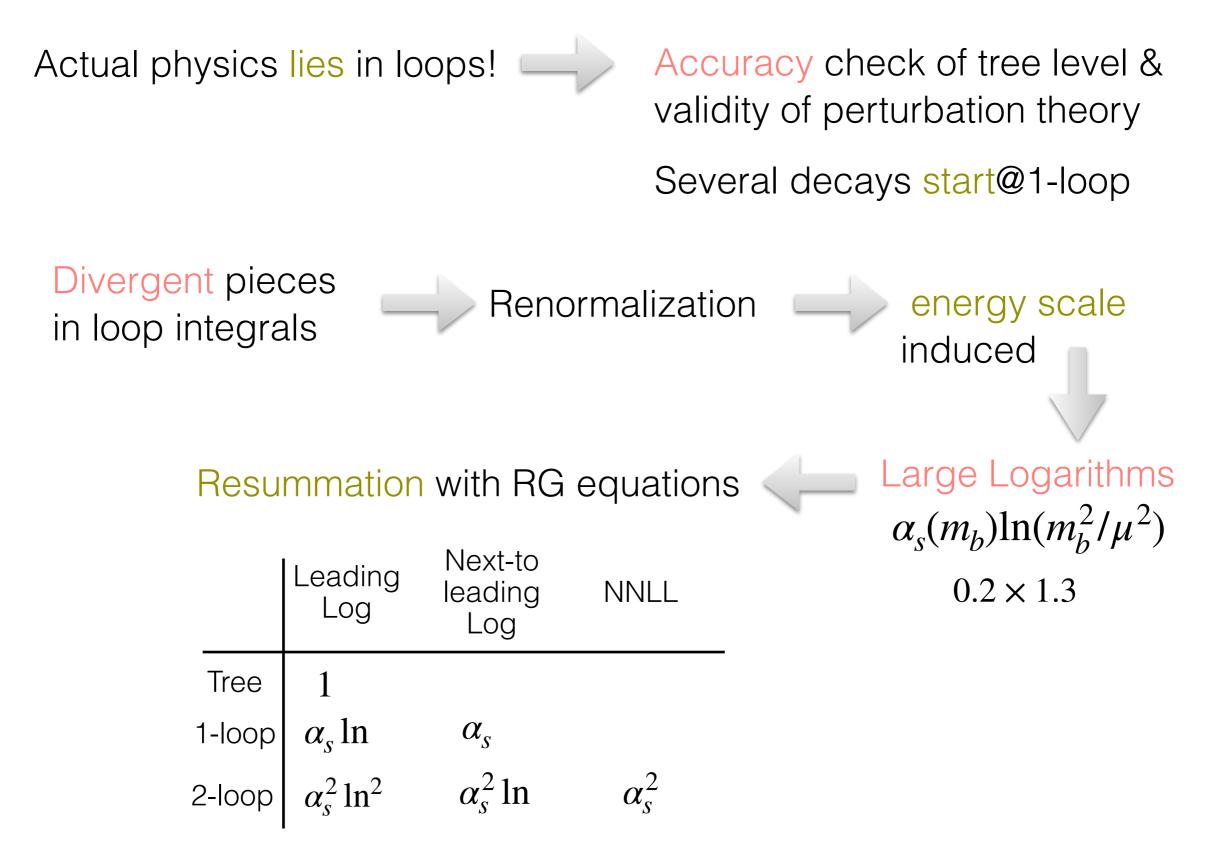
Accuracy check of tree level & validity of perturbation theory

Several decays start@1-loop

Divergent pieces in loop integrals

Renormalization

Loops



Weak decays of quarks involve different scales

 $\mu = \mathcal{O}(M_W)$ fundamental scale of weak interaction—small α_s

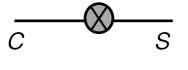
 $\mathcal{O}(1 \, \text{GeV}) \le \mu \le M_W$ ariation is significant

resummation of large Logs necessary

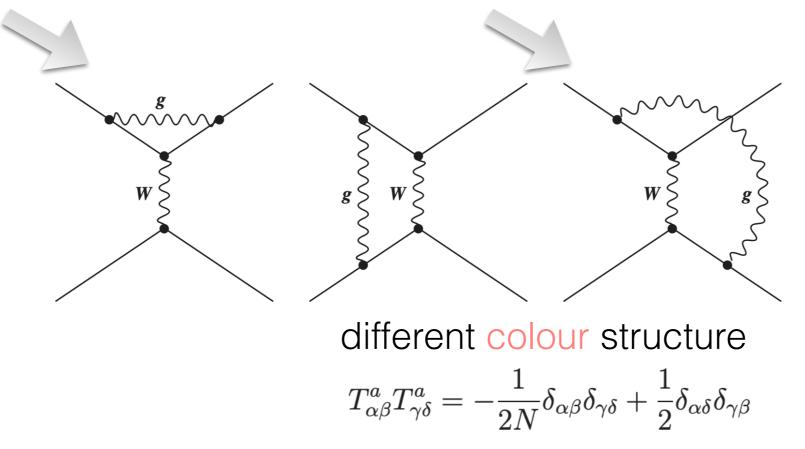
 $\mu \leq \mathcal{O}(1 \, \text{GeV})$ — confinement effects has to be included

Weak decays of quarks involve different scales $\mu = \mathcal{O}(M_W)$ fundamental scale of weak interaction—small α_s $\mathcal{O}(1\,{\rm GeV}) \le \mu \le M_W$ ariation is significant resummation of large Logs necessary $\mu \leq \mathcal{O}(1 \, \text{GeV})$ confinement effects has to be included An example: S \overline{C} С $A = -\frac{G_F}{\sqrt{2}} V_{cs}^* V_{ud} \frac{M_W^2}{k^2 - M_{ud}^2} (\bar{s}c)_{V-A} (\bar{u}d)_{V-A} \qquad (\bar{f}f)_{V-A} \equiv \bar{f}\gamma_\mu (1 - \gamma_5) f$ $= \frac{G_F}{\sqrt{2}} V_{cs}^* V_{ud} \, (\bar{s}c)_{V-A} (\bar{u}d)_{V-A} + O\left(\frac{k^2}{M_{uu}^2}\right)$

$$\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} V_{cs}^* V_{ud} C \mathcal{Q} + \text{higher D}; \quad \mathcal{Q} \equiv (\bar{s}c)_{V-A} (\bar{u}d)_{V-A}$$



- product of two currents expanded in series of local operators weighted by effective coupling constants— Wilson coefficients *C*
- C=1 altered by QCD corrections + new operators induced



$$\mathscr{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{cs}^* V_{ud} (C_1(\mu) Q_1 + C_2(\mu) Q_2), \qquad Q_1 = (\bar{s}_{\alpha} c_{\beta})_{V-A} (\bar{u}_{\beta} d_{\alpha})_{V-A} Q_2 = (\bar{s}_{\alpha} c_{\alpha})_{V-A} (\bar{u}_{\beta} d_{\beta})_{V-A}$$

Amplitude of full theory should match with the amplitude produced from effective theory Hamiltonian _____ matching condition

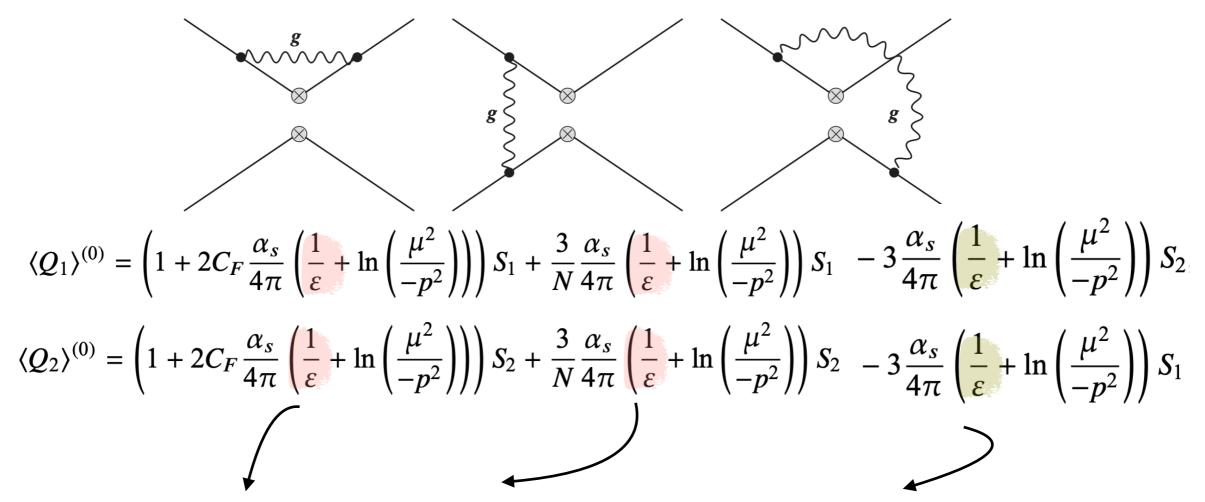
$$A_{\text{full}} = A_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{cs}^* V_{ud} (C_1 \langle Q_1 \rangle + C_2 \langle Q_2 \rangle)$$

$$\begin{split} A_{\text{full}} &= \frac{G_F}{\sqrt{2}} V_{cs}^* V_{ud} \Big[\left(1 + 2C_F \frac{\alpha_s}{4\pi} \left(\frac{1}{\varepsilon} + \ln\left(\frac{\mu^2}{-p^2}\right) \right) \right) S_2 + \frac{3}{N} \frac{\alpha_s}{4\pi} \ln\left(\frac{M_W^2}{-p^2}\right) S_2 \\ &- 3 \frac{\alpha_s}{4\pi} \ln\left(\frac{M_W^2}{-p^2}\right) S_1 \Big]. \end{split} \qquad S_1 \equiv \langle Q_1 \rangle_{tree} = (\bar{s}_{\alpha} c_{\beta})_{V-A} (\bar{u}_{\beta} d_{\alpha})_{V-A}, \\ &S_2 \equiv \langle Q_2 \rangle_{tree} = (\bar{s}_{\alpha} c_{\alpha})_{V-A} (\bar{u}_{\beta} d_{\beta})_{V-A}, \end{split}$$

Divergent pole can be absorbed in field redefinition

tree level matrix element

Matrix element



divergences in 1st two terms absorbed in field renormalization.

More divergent than full theory effective theory is nonrenormalizable

need additional constants —operator renormalization

Matrix element

 $(Q_i)^{(0)} = Z_q^{-2} \hat{Z}_{ij} \langle Q_j \rangle$ Quark field renormalization $\hat{Z} = 1 + \frac{\alpha_s}{4\pi} \frac{1}{\varepsilon} \begin{pmatrix} 3/N & -3 \\ -3 & 3/N \end{pmatrix}$

Renormalized operators:

$$\langle Q_1 \rangle = \left(1 + 2C_F \frac{\alpha_s}{4\pi} \ln\left(\frac{\mu^2}{-p^2}\right) \right) S_1 + \frac{3}{N} \frac{\alpha_s}{4\pi} \ln\left(\frac{\mu^2}{-p^2}\right) S_1 - 3\frac{\alpha_s}{4\pi} \ln\left(\frac{\mu^2}{-p^2}\right) S_2$$
$$\langle Q_2 \rangle = \left(1 + 2C_F \frac{\alpha_s}{4\pi} \ln\left(\frac{\mu^2}{-p^2}\right) \right) S_2 + \frac{3}{N} \frac{\alpha_s}{4\pi} \ln\left(\frac{\mu^2}{-p^2}\right) S_2 - 3\frac{\alpha_s}{4\pi} \ln\left(\frac{\mu^2}{-p^2}\right) S_1$$

Matching between full and EFT amplitudes gives

$$C_1(\mu) = -3 \frac{\alpha_s}{4\pi} \ln\left(\frac{M_W^2}{\mu^2}\right), \qquad C_2(\mu) = 1 + \frac{3}{N} \frac{\alpha_s}{4\pi} \ln\left(\frac{M_W^2}{\mu^2}\right)$$

remember when NO QCD: $C_1(M_W) = 0$, $C_2(M_W) = 1$

Operator renormalization similar to coupling constant renormalization if Wilson coefficients are thought as bare coupling constants in \mathscr{H}_{eff}

Matching between full and EFT amplitudes gives

$$C_1(\mu) = -3 \frac{\alpha_s}{4\pi} \ln\left(\frac{M_W^2}{\mu^2}\right), \qquad C_2(\mu) = 1 + \frac{3}{N} \frac{\alpha_s}{4\pi} \ln\left(\frac{M_W^2}{\mu^2}\right)$$

remember when NO QCD: $C_1(M_W) = 0$, $C_2(M_W) = 1$

Operator renormalization similar to coupling constant renormalization if Wilson coefficients are thought as bare coupling constants in \mathscr{H}_{eff}

Factorisation of
$$\left(1 + \alpha_s r \ln\left(\frac{M_W^2}{-p^2}\right)\right) \doteq \left(1 + \alpha_s r \ln\left(\frac{M_W^2}{\mu^2}\right)\right) \cdot \left(1 + \alpha_s r \ln\left(\frac{\mu^2}{-p^2}\right)\right)$$
energy scales@ $\mathcal{O}(\alpha_s)$

full theory= WC matrix element (short distance) (long distance)

$$\int_{-p^2}^{M_W^2} \frac{dk^2}{k^2} = \int_{\mu^2}^{M_W^2} \frac{dk^2}{k^2} + \int_{-p^2}^{\mu^2} \frac{dk^2}{k^2}$$

WCs are independent of external states p² dropped from the expressions need to be careful while regularising infrared divergences Operators mix under renormalization: Î is non-diagonal

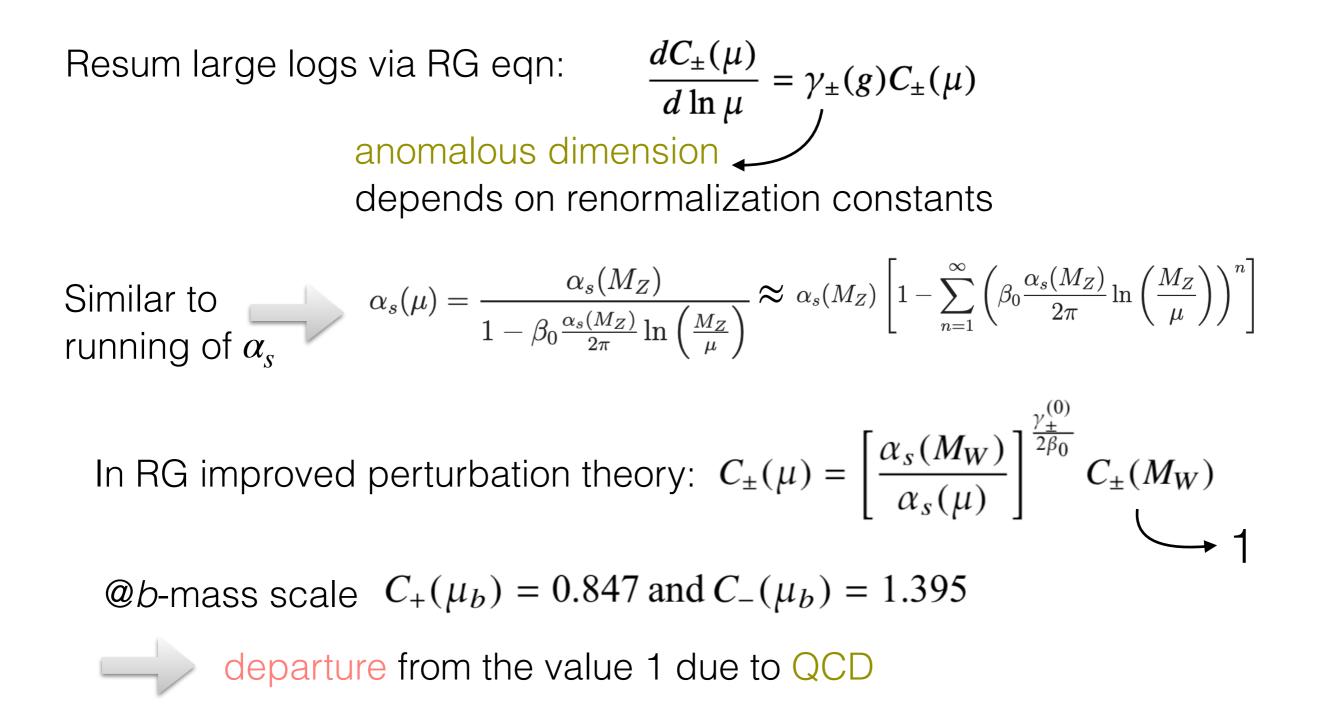
Counter term for Q_2 depends on the constants for both $Q_2 \& Q_1$

diagonal basis:
$$Q_{\pm} = \frac{Q_2 \pm Q_1}{2}, \qquad C_{\pm} = C_2 \pm C_1$$

 $C_{\pm}(\mu) = 1 + \left(\frac{3}{N} \mp 3\right) \frac{\alpha_s}{4\pi} \ln\left(\frac{M_W^2}{\mu^2}\right), \qquad \text{Large log } \mu = 1 \text{ GeV}$
 4%

Total 1st order correction amounts 60-130%

Naive breakdown of perturbative series



Prescription

Step-1: Matching in perturbation theory amplitude in full theory matched to operator matrix element in effective theory extraction of WCs $C_i(\Lambda)$ mass of heavy

particles integrated out

Prescription

Step-1: Matching in perturbation theory amplitude in full theory matched to operator matrix element in effective theory extraction of WCs $C_i(\Lambda)$ mass of heavy

particles integrated out

Step-2: RG improved perturbation theory

using anomalous dimension of operators compute WCs at any lower scale via RG evolution $C_i(\mu) = U(\mu, \Lambda)C_i(\Lambda)$

Prescription

Step-1: Matching in perturbation theory amplitude in full theory matched to operator matrix element in effective theory extraction of WCs $C_i(\Lambda)$ mass of heavy

particles integrated out

Step-2: RG improved perturbation theory

using anomalous dimension of operators compute WCs at any lower scale via RG evolution $C_i(\mu) = U(\mu, \Lambda)C_i(\Lambda)$

Step-3: Non-perturbative calculation

hadronic matrix elements at the lower scale via methods: Lattice gauge theory, QCD sum rules

factorization between short & long distance physics

 $\checkmark \rightarrow < \mu : \langle Q(\mu) \rangle$ $C_i(\mu): \mu > \checkmark$

Rusa Mandal, IIT Gandhinagar