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Fig. 1: Quark and parton-level decay of B → D ` ν̄` are shown.

The starting point for the calculation of the 1→ 3 decay rate is Fermi’s golden rule:

dΓ =
1

2mB
|M|2 dΠ3 , (1)

withM denoting the matrix element we wish to calculate, dΠ3 the Lorentz invariant phase space
or short LIPS, and mB further denoting the B-meson mass. The b→ c `ν̄` process at quark level
is shown in Figure 1 and its matrix element is given by

M =

[
ū
−igW
2
√

2
γµ(1− γ5)v

]
igµν − qµqν/m2

W

q2 −m2
W

[
c̄ Vcb

−igW
2
√

2
γν(1− γ5) b

]
. (2)

Here ū, v, c, and b denote the spinors of the charged lepton, the neutrino, the charm quark, and
the bottom quark, respectively. The other terms are: q2 = qµqµ denotes the four-momentum
transfer to the lepton-neutrino pair in the decay, mW denotes the W -bosons mass, Vcb denotes
the b → c CKM matrix element, and γµ are the usual gamma matrices with γ5 = iγ0γ1γ2γ3.
Note that 1

2 (1− γ5) acts as a left-handed projection operator to ensure the V −A nature of the
SM charged weak current.

At low energies (q2 � m2
W ) the W -boson propagator,

igµν−qµqν/m2
W

q2−m2
W

, can be simplified by

neglecting the q2 and qµqν terms, as they are orders of magnitudes smaller than the W -boson
mass squared. In semileptonic B-meson decays involving charmed final states the allowed values
for q2 range from m2

` ≈ 0 GeV2 to about 11.6 GeV2, whereas m2
W ≈ 6400 GeV2. Introducing

Fermi’s constant to describe the weak interaction as an effective coupling, GF =
√

2g2W
8m2

W
, simplifies

the matrix element to

M = −iGF√
2
Vcb [ūγµ(1− γ5)v]︸ ︷︷ ︸

Lµ

[c̄γν(1− γ5) b]︸ ︷︷ ︸
hµ

. (3)
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The b- and c-quarks interact non-perturbatively with the spectator quark of the B- and
final state mesons. The simplest decay is to study the decay of a B-meson into a pseudoscalar
final state, e.g. a D (the eventual expression will be identical also for π with the replacement
Vcb → Vub) and in what follows we will study the decay of B → D ` ν̄` with ` being a light
lepton whose mass we can neglect (m` ≈ 0). This is an excellent approximation for electrons
and muons. To make this apparent we introduce the wave function of the B- and D-meson as

〈D(pD)|hµ|B(pB)〉 = Hµ , (4)

with pB denoting the four-momentum of the B-meson and pD the four-momentum of the D-
meson. The matrix element then becomes the product of a hadronic current Hµ and leptonic
current Lµ:

M = −iGF√
2
Vcb LµH

µ . (5)

2 Reference frames

Before discussing further Lµ and Hµ we briefly should discuss the kinematic properties of the
1→ 3 decay of B → D ` ν̄`. Two frames are of particular importance: the frame in which the B-
meson is at rest (experimentally accessible in analyses using hadronic tagging) and the restframe
of the virtual W -boson. Before we start, let us define once more the 4-momentum of the W -boson
and write out some relations with the B- and D-meson and the lepton-neutrino-pair:

qµ = pµW = pµB − pµD = pµ` + pµν , and q2 = qµq
µ : mass squared of the virtual W boson.

(6)

2.1 W -frame

Without loss of any generality one can choose the direction of each momentum such that the
final calculations will be most convenient. This is guaranteed as one can always rotate in set
of coordinates that fulfill this specific choice. Our choice is shown in Figure 2: the B-meson
propagates along the negative z-axis, and we choose the y − x-plane as the decay plane, i.e. the
lepton and neutrino propagate back-to-back in y − x direction. As the virtual W -boson is at
rest,

~p` = − ~pν , (7)

and assuming zero lepton mass we find

pµ` =

(
|~p`|
~p`

)
, pµν =

(
|~pν |
~pν

)
=

(
|~p`|
−~p`

)
. (8)

We further find that

q2 = (p` + pν)µ(p` + pν)µ = 4 |~p`|2 → |~p`| =
q

2
. (9)

The 3-momentum of the B-meson is completely passed to the D-meson,

~pB = ~pD , (10)
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2. Theory

The reason semileptonic decays such as B ! D`⌫` are preferred for |Vcb| mea-
surements is this factorization into a leptonic and hadronic current which can be
evaluated separately. This is not possible for hadronic decays. However, the fac-
torization presented here is only valid at the tree level and higher order corrections
need to be taken into account with an electroweak correction factor. This will be
discussed in section 2.2.4.

2.2.1.2. Reference Frames

Before evaluating the matrix element and the phase space, it is useful to define the
reference frames which will be used in the process and to establish some relations.
There are two reference frames which are especially convenient: the rest frame of
the virtual W boson (W -frame) and the rest frame of the B meson (B-frame). I
first define qµ as usual as the 4-momentum of the virtual W :

qµ = pµ
W = pµ

B � pµ
D = pµ

` + pµ
⌫ . (2.39)

Its square (q2 = qµqµ) is then the mass of the virtual W .

W -Frame I will denote quantities in the W -frame with a hat, such as p̂µ
` . Figure 2.5

shows a schematic of the W -frame.

Figure 2.5.: Kinematics in the W -Frame. Charged lepton and neutrino are produced
back-to-back, i.e. with opposite 3-momenta. The D meson carries the
same 3-momentum as the incoming B meson.

Without loss of generality I choose the direction of the B meson as the negative
z-axis and the plane in which the decay happens as the yz-plane. Since the W is at
rest and due to 3-momentum conservation it follows that

~̂p` = �~̂p⌫ . (2.40)

Assuming zero lepton mass21:

p̂µ
` =

 
|~̂p`|
~̂p`

!
, p̂µ

⌫ =

 
|~̂p`|
�~̂p`

!
. (2.41)

21Since I am working with light charged leptons, their masses (me ⇡ 0.5 MeV and mµ ⇡ 106 MeV)
are much smaller than the involved momenta.
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Fig. 2: The kinematics in the W -frame are shown: the charged lepton and neutrino are back-to-
back, which is only possible if the D-meson and the B-meson have identical 3-momenta.

and thus

pµB =

(
E` + Eν + ED

~pD

)
=

(
q + ED
~pD

)
, (11)

where we used that q = E`+Eν and the W -boson is at rest. The invariant mass of the B-Meson
can be used to find a useful relation between q2 and |~pD|:

m2
B = p2

B = q2 + 2qED + E2
D − |~pD|2 = q2 + 2qED +m2

D . (12)

Solving for ED results in ED =
m2
B−m

2
D−q

2

2q and we find

|~pD| =
√
E2
D −m2

D =

√
(m2

B −m2
D − q2)

2

4q2
−m2

D . (13)

2.2 B-frame

This will be discussed as classwork next week Wednesday. There you will derive the relation of

|~pD| =
mB

q
|̃~pD| , (14)

with~̃pD denoting the D-meson 3-momentum in the B-meson restframe.

3 The squared matrix element

To evaluate the rate, we need to calculate

|M|2 =
G2
F |Vcb|

2

2
LµLρ∗HµH

∗
ρ , (15)

and we will discuss the leptonic matrix LµLρ∗ and the hadronic matrix HµH
∗
ρ separately. It is

convenient to evaluate both in the W -restframe as many of the expressions vanish.
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3.1 The leptonic matrix: LµLρ∗

The leptonic matrix is given by

LµLρ∗ = [ūγµ(1− γ5)v] [ūγρ(1− γ5)v]
∗
, (16)

and contains multiple spin configurations. As we are interested in the spin-summed expressions
we can use the trace formalism to express the leptonic matrix as a single trace of γ matrices:

LµLρ∗ = Tr
[
γµ(1− γ5)

(
/pν −mν

)
γ0 (γρ(1− γ5))

†
γ0
(
/p` +m`

)]
. (17)

This trace can be simplified to

LµLρ∗ = (pν)α (p`)β Tr
[
γµ(1− γ5)γαγ0(1− γ5)γρ†γ0γβ

]
, (18)

by assuming m` = mν = 0. This trace can be further reduced by using Tr(A+B) = Tr(A)+Tr(B)
and the anti-commutation property of {γµ, γ5} = 0 to

LµLρ∗ = (pν)α (p`)β
{

2Tr
[
γµγαγργβ

]
+ 2Tr

[
γ5γ

µγαγργβ
]}

(19)

and the remaining traces can be simplified to

Tr
[
γµγαγργβ

]
= 4

(
gµαgρβ − gµρgαβ + gµβgαρ

)
, (20)

Tr
[
γ5γ

µγαγργβ
]

= −4i εµαρβ , (21)

with εµαρβ denoting the Levi-Civita tensor. We thus find

LµLρ∗ = 8 (pν)α (p`)β
(
gµαgρβ − gµρgαβ + gµβgαρ − i εµαρβ

)
, (22)

= 8 [(pν)
µ

(p`)
ρ − gµρpνp` + (p`)

µ
(pν)

ρ
]− 8i (pν)α (p`)β ε

µαρβ . (23)

We will now investigate the leptonic matrix in the W -boson restframe and study its temporal,
mixed temporal-spatial, and its spatial components. In the restframe of the virtual W -boson we
showed that

(p`)
0

= (pν)
0

=
q

2
, ~p` = −~pν , ~p` · ~pν = −q

2

4
, pνp` =

q2

2
. (24)

Temporal component: L0L0∗: Inserting the expressions from above we find

L0L0∗ = 8
[
(pν)

0
(p`)

0 − g00pνp` + (p`)
0

(pν)
0
]
− 8i (pν)α (p`)β ε

0α0β . (25)

= 8

(
q2

4
− q2

2
+
q2

4

)
− 0 = 0 , (26)

i.e. the component vanishes in the W -restframe.

Mixed components: L0Li∗: Here i = 1, 2, 3 and inserting the expressions from above we find

L0Li∗ = 8


(pν)

0
(p`)

i − g0ipνp`︸ ︷︷ ︸
=0

+ (p`)
0

(pν)
i


− 8i (pν)α (p`)β ε

0αiβ , (27)

= 8
[
(p`)

0
(p`)

i − (p`)
0

(p`)
i
]

︸ ︷︷ ︸
=0

−8i (pν)α (p`)β ε
0αiβ , (28)

= −8i (pν)α (p`)β ε
0αiβ . (29)
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Inspecting the Levi-Civita tensor and the 3-momenta in the W -restframe further, we notice that

(p`)1 = (pν)1 = 0 , (p`)2 = − (pν)2 , (p`)3 = − (pν)3 , (30)

i.e. for α = 1 or β = 1 the expression vanishes and thus L0L2∗ = L0L3∗ = 0. Finally the last
term L0L1∗ we find

L0L1∗ = −8i


(pν)3 (p`)2 ε

0312
︸ ︷︷ ︸
=+1

+ (pν)2 (p`)3 ε
0213
︸ ︷︷ ︸
=−1


 , (31)

= −8i [− (p`)3 (p`)2 + (p`)2 (p`)3] = 0 , (32)

i.e. all mixed components of the lepton matrix vanish.

Spatial components: LiLj∗: The spatial components with i = 1, 2, 3 and j = 1, 2, 3 are

LiLj∗ = 8
[
(pν)

i
(p`)

j − gijpνp` + (p`)
i
(pν)

j
]
− 8i (pν)α (p`)β ε

iαjβ , (33)

= 8

(
−q

2

4
eiej + δij

q2

2
− q2

4
eiej

)
+ 4 i q2 ekε

ijk , (34)

= 4q2
(
δij − eiej

)
+ 4 i q2ekε

ijk = 4q2
(
δij − eiej + iekε

ijk
)
, (35)

where we introduced the unit vector in direction of the lepton, ei, and reduced the 4-dimensional
Levi-Civita tensor to a 3-dimensional expression via

(pν)α (p`)β ε
iαjβ = (pν)0 (p`)k ε

i0jk + (pν)k (p`)0 ε
ikj0 , (36)

= − (pν)0 (p`)k ε
0ijk + (pν)k (p`)0 ε

0ijk , (37)

= −(
q

2
) (
q

2
ek) ε0ijk − (

q

2
ek) (

q

2
) ε0ijk (38)

= −2
q2

4
ek ε

0ijk = −q
2

2
ek ε

ijk . (39)

3.2 The hadronic matrix: HµHρ
∗

The hadronic matrix contains non-perturbative physics, i.e. can in general not be calculated
in a perturbative manner by starting from the quark-level diagram and include corrections of
additional diagrams in a series of increasing αs as here αs > 1. There are however, a range of
properties that the hadronic current Hµ,

Hµ = 〈D(pD)|hµ|B(pB)〉 , (40)

has to fulfill that help us understanding its general structure:

1. The unknown expression of the hadronic current needs to be Lorentz covariant, i.e. its
transformation properties are identical with other entities we encounter in relativistic quan-
tum field theories.

This might not sound like much, but due to this the expression of Hµ has to be proportional
to the Lorentz vectors and scalars that enter the hadronic matrix element. Without the loss of
generality we can thus expand the unknown hadronic current as

Hµ = (pB + pD)µ f+(p2
B , p

2
D, pBpD) + (pB − pD)µ f−(p2

B , p
2
D, pBpD) . (41)
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The Lorentz vectors of the hadronic transition, (pB ± pD)µ, are proportional to some unknown
scalar functions f±, which can only depend on Lorentz scalars of the matrix element. The only
such scalars are p2

B , p2
D, pBpD. Note that another choice would have been

Hµ = (pB)µ f(p2
B , p

2
D, pBpD) + (pD)µ g(p2

B , p
2
D, pBpD) , (42)

but as we will see shortly the first Ansatz has some interesting features. We know more:

2. The matrix element describes an on-shell transition into an an on-shell transition; thus
p2
B = m2

B and p2
D = m2

D.

Thus f±(p2
B = m2

B , p
2
D = m2

D, pBpD) = f±(pBpD) does only depend on a single Lorentz scalar.
The choice of pBpD as the Lorentz scalar is not very convenient. A better (and now to you
familiar) choice is

q2 = (pB − pD)
2

= m2
B +m2

D − 2pBpD , (43)

and we thus write

Hµ = (pB + pD)µ f+(q2) + (pB − pD)µ f−(q2) . (44)

Note that we are allowed to do this, as we can always transform a function of pBpD into a function
of q2. Before discussing more the a-priori unknown functions f±, let us briefly investigate the
Lorentz structure more in the W -boson restframe. We recall from the previous section that

Lµ qµ = 0 , (45)

as in the W -restframe q has only temporal components whereas Lµ is only non-zero for spatial
components. Thus the second term proportional to (pB − pD)µ = qµ will vanish when contracted
eventually with Lµ. Note that albeit we used the W -restframe which used the approximations
that m` = 0, this term does not vanish in general for m` 6= 0. This can be seen independent
of Lµ, by noticing that (pB − pD)µ = (p` + pν)µ. Using the equation of motion of the lepton
and the neutrino one can show that these terms in the eventual contraction are proportional to

/p` + /pν = m` −mν , i.e. vanish in the zero lepton mass limit. We will encounter f− again in the
next exercise sheet where we will study

R(D) =
Γ(B → D τ ν̄τ )

Γ(B → D ` ν̄`)
. (46)

Incorporating the above observation results in

Hµ = (pB + pD)µ f+(q2) , (47)

and we are left with a single unknown function f+, which depends on q2, that fully describes
the matrix element in the B → D ` ν̄` decay for light leptons. This function is called the B → D
form factor.

The f+(q2) form factor: How can we calculate or predict f+(q2)? There are several methods:

1. Examine the QCD Lagrangian in the mc,b → ∞ limit: this results in an effective field
theory called HQET (short for Heavy Quark Effective Field Theory) which systematically
allows to write downM in orders of mc,b and αs. As four-momenta are ill-defined entities in
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the infinite mass limit, the form factor itself is parametrized via w = vBvD =
m2
B+m2

D−q
2

2mBmD
,

the product of the four-velocities of the two heavy quarks. The form factor f+ is identical
with the so-called Isgur-Wise function ζ and one can show

f+(q2
max) = ζ(w = 1) = 1 . (48)

(without proof) and as both quarks are heavy with respect to the spectator quark, we
expect that it will not notice the b→ c transition if the four-velocities do not change much.

→ From this we expect the form factor to be a slowly varying function of w, and one could
parametrize it as

f+(q2) = 1 + (w − 1)ρD , (49)

with ρD encapsulating the non-perturbative dynamic.

2. Lattice QCD: Lattice QCD can calculate the form factor at large q2.

3. QCD Sum-rules allow to calculate the form factor at low q2.

4. Extract the form factor directly from data. I.e. measure the decay rate as a function of q2

and fit with a model independent parametrization.

Today a combination of all these approaches is common. To extract |Vcb| from a measured
branching fraction approach 4. will need to receive input from either 1-3 as |Vcb| is degenerate
with the form factor normalization.

The hadronic current in the W -frame: We can further simplify the expression derived in the
W restframe. We already saw that contractions of the form

LµHµ , (50)

will be only non-zero if µ is spatial. The spatial parts of the hadronic current are

~H = (~pB + ~pD) f+(q2) = 2~pDf+(q2) , (51)

= −2|~pD|~ezf+(q2) , (52)

= −2
mB

q
|̃~pD|~ezf+(q2) , (53)

where we introduced ~ez the unit vector of the z − axis and |̃~pD| is the absolute value of the
D-meson momentum in the B-frame (cf. Section 2.2).

3.3 Putting everything together: the complete Matrix element

We now derived all relevant expressions and can put the complete matrix element together. We
find

|M|2 =
G2
F |Vcb|

2

2
4 q2

(
δij − eiej + iekεijk

)
4 f2

+(q2)
m2
B

q2
|̃~pD|2 (ez)i (ez)j , (54)

= 8G2
F |Vcb|2 m2

B |̃~pD|2 f2
+(q2)

(
1− cos θ2

`

)
, (55)
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where we used that ei (ez)i = cos θ` (cf. Figure 2) and e1
z = e2

z = 0 what ensures iekεijk to
vanish. We now only need to multiply in the LIPS for a three-body decay

dΠ3 =

(
1

(4π)5

|̃~pD|
mB

)
dq2dΩD dΩ` , (56)

as we have no angular dependence on the D-meson and the dependence in the matrix element
for the lepton is 1− cos2 θ` = sin2 θ` we end up with (without proof)

∫ ∫
sin2 θ`dΠ3d ΩD dΩ` =

8π

3

(
1

(4π)4

|̃~pD|
mB

)
dq2 . (57)

The total B → D ` ν̄` decay rate for m` = 0 as a function of q2 is thus given

dΓ

dq2

∣∣∣∣
m`=0

=
G2
F |Vcb|

2

24π3
|̃~pD|3

[
f2

+(q2)
]
.

(58)

Incorporating the full lepton mass effects this expression becomes (without proof),

dΓ

dq2

∣∣∣∣
m` 6=0

=
G2
F |Vcb|

2

24π3
|̃~pD|3

(
1− m2

`

q2

)2
[
f2

+(q2)

(
1 +

m2
`

2q2

)
+

3

2

m2
`

q2

(
m2
B −m2

D

2mB |̃~pD|

)
f2

0 (q2)

]
.

(59)

with f0(q2) denoting a form factor related to f−(q2).

3.4 The ratio R(D):

This allows us to write down an expression for R(D) in the SM

R(D) =

∫
dq2

[
dΓ
dq2

∣∣∣∣
m`=mτ

]

∫
dq2

[
dΓ
dq2

∣∣∣∣
m`=0

] . (60)

Note that the dependence on |Vcb|2 and G2
F cancel in the ratio and that the numerator depends on

both form factors f+/0 and the denominator only on f+. This will lead to a certain cancellation
of uncertainties. To make a prediction one has to determine the form factor f+, either by fitting
the B → De ν̄e and B → Dµ ν̄µ q

2 spectra or by combining lattice and Sum rule constraints.
The form factor f0 can be constrained either through QCD relations (HQET relates f+ and f0)
or by using results from the Lattice, as it cannot be directly measured using light leptons. We
will do a homework exercise about this.


