A view from the other side:
Semileptonics at LHCDb
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Aims
* Aims today:

* Talk about main advantages/disadvantages of LHCb compared
to Belle-ll.

e Discuss challenges that arise when doing semileptonics.
* Introduce techniques that can address those challenges.

* Discuss specifically how LHCb can contribute to the
measurement of |Vcp|.



B-hadron production at a hadron collider

* b-hadrons also produced in pairs at the LHC, via gluon-gluon
fusion.

/ ’ |  The cross-section for this

" process at 13TeV is 500pub.
) Peak luminosity at HL-LHC ~ 1035 cm?2s-1.
\ p

Nob = L x o~ 50M/s

e At the HL-LHC, 500M bb pairs produced every 10 seconds (!)

 b-hadron cocktail:
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The LHCb experiment




The LHCb experiment
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« LHCDb covers 5% of the solid angle but has acceptance for 20% of*b-
hadrons.




20 MeV mass resolution
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Performance numbers

Trigger efficiencies:

Mode Trigger eff

Hadronic 30%

Electronic 40%
Muonic 60%
Dimuon 80%
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A typical bb event




A typical bb event

LHCB-PAPER-2017-037
— T T T T T ] —
[ ] pp inelastic 2 |
1000 )

B [0 By = n'm % 10 it -+ Data _§I
B = iy --- FONLL ]

800[— S “e,
- = = *-o- =
600 — % ~ ey 7
§ B 107 F +
- = S - e 3
400~ C N
i 107 E  LHCb /s =7TeV . =
200 E 20<y<45 :
= : L T L 107 E A R RS -
0 20 40 60 80 100 0 10 20 30 4(
# tracks pr [GCV /C]

2 | x10° LHCb
S |[JData (3t )m2, >0.5 GeV¥ct g Nf T T . 3
> 1 Sim — 80F =
5 © _FE LHCb./s=7TeV + Data =
£ S F 02 pr<40Gev/e % FONLL E
< o ‘__ 60 ;_ Pt _;
- - 50 3
201 - 40 F =
- : 30 E
B '_"—-___ 7 :—*—'._Q_. -
i — i 20 Btz isaiaiies, 00C000pOc0000, —
- —— B R R S 3
0 — 10F e,
& 1.1F . = I I I I 3
v ] ?“‘*“**"“'“’****f***+*+@*+**ﬂf*ﬁ*’+“*ﬁ***“mﬂﬁ#*ﬂﬁ +'++ﬁ++% 2 25 3 35 4 4
098 E
= 0.8E ‘ ‘ ] Y
A 0 20 40 60

D’y flight distance (mm)


https://cds.cern.ch/record/2289591
https://cds.cern.ch/record/2848421

Semileptonic challenges

* Missing energy a complication for any experiment.

* Particularly challenging in a hadron collider because:
* No beam energy constraint.
* Busy events.
* Large background for neutrals.

* Additional complication due to lack of precise absolute production knowledge.

* Large branching fractions mandate precision (e.g. competitive [Vep|

measurement needs 1% uncertainty).
V| from Bs, Phys. Rev. D101 (2020) 072004
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The pointing

 Large boost coupled with vertex precision allows for excellent primary-
secondary vertex direction.
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* For fully reconstructed decays pointing the THE variable to reduce background.
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Corrected mass

* The corrected mass combines the visible mass with the component
of momentum transverse to the B flight direction.
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Example from the |Vco| measurement from BS
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 In addition to mcor, fit for p, which can be interpreted once the
resolution has been taken into account.

Alternative to neutrino reconstruction.
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Neutrino reconstruction

Three unknowns with a single missing neutrino.
Pointing constraint gives us back two of them.

Final unknown determined using the mass constraint of the b-hadron.

Unfortunately left with ambiguity as mass constraint fixes 4 / p2 not p itself.

* This ambiguity is the main source of resolution for g2.
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Choosing the neutrino solution

* Easiest choice is to randomly choose between the two solutions.

* Other methods involve comparing the solved b-hadron kinematics to what
one expects on average.

arXiv:1611.08522
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e Other ideas include using Gaussian processes.

* Interesting feature: For b—>c decays the solution that gives the smaller
neutrino momentum is more often correct (60/40). Choosing randomly 50/50

less than ideal!
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https://arxiv.org/pdf/1611.08522.pdf

Track IP

Candidates / (0.3 GeV*/c%)

Pull

« Particularly important for semitauonic decays and still

then control these backgrounds.

Isolation

* Many backgrounds from feed-down (e.g. D**), isolation can be used to reduce and
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Isolation

* Many backgrounds from feed-down (e.g. D**), isolation can be used to reduce and
then control these backgrounds.
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e Particularly important for semitauonic decays and still useful for b — cuv.
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Data driven mis-id background

» Particularly complicated background arises from B — X hX decays, followed by
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- As it originates from a large cocktail of B — X_hX decays, very difficult to model
with simulation - derive it from data.
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https://cds.cern.ch/record/2293066

Data driven method

* Mis-ID data cleanly selected by Nj

reversing the lepton-ID.

Selection
> N,

uID

« Number mis-IDed, N(h — u) is then given by

N(h = p) ~ NjP(h - i) = N;P(u — h)

19



The problem

Selection
* Mis-ID data cleanly selected by Nj — > N
reversing the lepton-ID.
M
uID >

* Problem: mis-ID background consists of different hadron species which have
different mis-ID probabilities.

/\0.07_1 T T I T T T I T T T I T T T I T T L /'\0.07_1 T T I T T T I T T T T T T T T T T T

,?‘ LHCB-DP-2013-001 d ,?‘ ' (©)

Z20.05F = 20.05F =
\O -+ 1 & - .
0.04F . 0.04F -
0.03F %} - 0.03F -
- |- . - .
002 . . 002F ire -
2 g R
O.OlE 0.0l_ **%ﬁ* E
O C L1 L1 PR T T N T B O - 1_%‘7'1 TR | i Bl | L ]

0 20 40 60 80 100 0 20 40 60 80 100
Momentum [GeV/c] Momentum [GeV/c]

* Equation becomes more complicated:

Nth — u) = N_P(xr — fi) + NyP(K — i) + N,P(p = ji) + N,P(e — i) + N,P(g — f1)
20


https://cds.cern.ch/record/1553139

Solution

* Split the hadron sampile into different regions depending on the PID

response. L HCb-PAPER-2013-063
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* Cross feed turns the equation into a matrix equation

Ni Pifr —»>7n) PK —>m) --- Nr
Ny |- | Pm—K) P(K—K) --- Nk

* Can unfold using the usual approaches or fold in using a likelihood fit (preferred).



A word on simulation

* At the LHGC, it takes 25ns to produce an event.
|t takes about a minute for fully simulate an event.
* Roughly 1 in 100 collisions has a bb parr.

* The branching fractions of the decays involved are O(%) level, multiplied by
O(10%) for the D decay.

* That still leaves 4 orders of magnitude difference in the production rate
between simulation and data.

* Producing enough simulation is difficult, and usually requires lots of tricks.

22
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Fast simulation

Two main methods to make simulation faster, both used in semileptonic analyses

Redecay Tracker only simulation
Reuse underlying event for Turn off parts of the detector
different decays. response (shower development,

arXiv:1810.10362 photon propagation in RICH).

Speed up 10-100, same disk space. Speed up by factor 8, disk space
down by 40%

23
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https://arxiv.org/abs/1810.10362

Flight distance

« One other useful aspect for T — 3x(x7)r decays is to utilise the

flight distance.
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Phys. Rev. Lett. 120, 171802 (2018)

* |n principle could use it for 7 — u decays, but tends to increase

combinatorial background.
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How can LHCb contribute to |Vcb|?



V| measurement from Bs decays

» Exploit diversity of b-hadrons to measure [Vcb| with Bs decays.

 Normalise Bs? signhal to corresponding B0 decays.

_ B(B) = Dty
T B(B°—= D uty,)’
. BB = Dy,
- B(BY = D* uty,)

* Fit to determine form factors and signal yield.

Candidates per 0.1 GeV/c?

LHCb, Phys. Rev. D101 (2020) 072004

[ B) =D, v,
F 7|Phys. bkg.
- llComb. bkg.

en)

Candidates per 0.115 GeV/c

p (D) [GeV/c]

e Use BO9%->D0Ouv branching fractions to determine normalisation with
4(3)% uncertainty from PDG.

 Measurement of fs/fq used for production fractions.

* Also limited by knowledge on D) branching fractions.

e Also measured Bs->Ds() form factors: arxiv:2003.08453
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https://doi.org/10.1103/PhysRevD.101.072004
http://arxiv.org/abs/2003.08453

IVeb| results

* Performed analysis with CLN and BGL parameterisations.

e Parameters have constraints from e.g. HPQCD [1].

LHCb, Phys. Rev. D101 (2020) 072004
Vip|cin = (41.4 £ 0.6 (stat) £ 0.9 (syst) & 1.2 (ext)) x 1077 N B B LR I

Vip|sar = (42.3 0.8 (stat) 0.9 (syst) &= 1.2 (ext)) x 1073 | cigo torrso 270 1990, —

Belle [PRD 93, 032006 (2016)] cN

|
BaBar [PRD 79, 012002 (2009)] 1—‘"‘"—'

BaBar [PRL 104, 011802 (2010)]
ALEPH [PLB 395, 373 (1997)] ——n

CLEO [PRL 89, 081803 (2002)] | e
. . OPAL [PLB 482, 15 (2000)] s

* Both results compatible with each OPAL PL 46215 200) i
DELPHI [PLB 510, 55 (2001)] i
. . DELPHI [EPJ C33, 213 (2004)] i
other and existing measurements. S
BaBar [PRL 100, 231803 (2008)] '-‘:‘L
BaBar [PRD 79, 012002 (2009)]
Belle [PRD 100, 052007 (2019)] o el
BaBar [PRL 123, 091801 (2019)] ol
Abstract LHCb [LHCb-PAPER-2019-041] L

—Exclusive average (HFLAV 2019) |

The shape of the BY — D* u* v, differential decay rate is obtained as a function of
P ” s | H ; Y 3 St | Inclusive average (HFLAYV 2019) |

the hadron recoil parameter using proton-proton collision data at a centre-of-mass
energy of 13 TeV, corresponding to an integrated luminosity of 1.7 fb~! collected by
the LHCb detector. The BY — D?~ u*v, decay is reconstructed through the decays 10 20 30 40

D:” — D;~ and D; -+ K~ K*xn~. The differential decay rate is fitted with the |Vb| [10_3]
C

CENSORED o= [e10)2 =00 Boyd-Grinstein-Lebed (BGL) parametrisation|]

of the form factors, and the relevant quantities [l are extracted.

IIIIIIIIIIIIIIIIIIlI F 1 11

[1] McLean, Davies, Koponen, Lytle [HPQCD]: Phys. Rev. D 101, 074513 (2020), see also Judd, Davies https://arxiv.org/abs/2105.11433
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https://arxiv.org/abs/2105.11433
https://doi.org/10.1103/PhysRevD.101.072004

Yes, it really is a |Vcb| measurement

 |If both numerator and denominator depend on |Vcb|, how can one be sensitive
tO |Vcb|?

 The point is that the denominator is measured, we do not use a prediction
which depends on |Vey|.

 The B%—>D0) branching fraction measurements could be correlated to the
exclusive |Veb| B-factory measurements, but | understand this is a small

effect(?).

Bigi, Mannel, Uraltsev, JHEP09(2011)012

 We do, however, rely on the equally of semileptonic widths.

* We are heavily dependent on this in LHCb, so might be useful to provide
precise validations in data. More lifetime measurements?
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https://arxiv.org/ct?url=https://dx.doi.org/10.1007/JHEP09(2011)012&v=78a8fb85

Planned measurements

* Plan to perform a similar measurement with Aw,® decays.

e Here the normalisation is a bit different, we instead normalise to inclusive
No0 semileptonic decays and employ equally of partial widths.

| | Neorr (A} = A u—7,)
F‘ Jl 0 3 41 + - _ | corf Vo C | [y i :

* Plan is to use the differential measurement as a function of g2 to control form
factor uncertainties a la LHCb-PAPER-2017-016

* Also discussions on performing a measurement with B0—>D"uv decays
using a similar method:

B(B° » D* utv,) . 2ncorr(B® > D* " ptv),)
B(B — XC.U-I_VMX) Neorr (DUt X) + neorr (D™t X)

Finally, working on B — D*uv angular analysis, which will help constrain
form factors.
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Summary

LHCDb good at the y-axis, Belle (ll) good at the x-axis.
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https://arxiv.org/abs/2303.17309

