How to do Belle＋Belle Il analyses

—How to do Belle analyses on basf2 with b2bii

Xiaodong Shi（KEK）

Thanks to Chia－Ling，Nishida－san，Junhao，Longke，Yubo Li，Yi for help．

素粒子原子核研究所 Institute of Particle and Nuclear Studies

What's in this talk

- Why we shall do B1+B2 analysis?
- How to do B1+B2? (Most are from B2BII tutorial)

About me:l joined Belle II 2 years ago. Even I didn't know Belle a lot, I did a B1+B2 analysis. Apologize that I won't cover all thing, e.g. scan data set, trigger thing.

8. B2BII

The b2bii package in basf2 converts Belle MDST files (BASF data format) to Belle II MDST (basf2 data format). This enables performing physics analysis using data collected with Belle detector with the analysis software and algorithms developed for the analysis of data collected with the Belle II detector. The B2BII converter allows for estimation and validation of performances of various advanced algorithms being developed for Belle II.

- 8.1. Overview
- 8.2. B2BII Analysis
- 8.2.1. Prerequisites
- 8.2.2. B2BII Converter
- 8.3. Converted data objects and other information
- 8.3.1. Charged Final State Particles
- 8.3.2. Neutral Final State Particles
- 8.3.3. Vo Particles
- 8.3.4.
(K_\{L\}^\{0\}) Particles
- 8.3.5. Event Classification flags
- 8.4. Belle MDST samples
- 8.4.1. Belle Data and Generic MC
- 8.4.2. Rare B MC
- 8.4.3. Generating MC sample
- 8.5. FAQ
- 8.5.1. PID corrections and systematic errors
- 8.5.2. Full Event Interpretation
- 8.5.3. Flavour Tagger
- 8.6. b2bii functions
- 8.6.1. b2biiConversion
- 8.6.2. b2biiMonitors
< Previous $\begin{aligned} & \text { 7.9. Full list of analysis modules }\end{aligned}$

Why we shall do B1 + B2 analysis?

_-Why we shall still use Belle data set?

- How to get a better physics result? Naive answers:
- Learn more from theory experts. \rightarrow What we are doing this week.
- Upgrade detectors. \rightarrow Upgrade WG are working on it.
- Better MC simulation/systematic control. \rightarrow Check performance talk...
- Need more data, less fluctuation, smaller statistical uncertainty.
\rightarrow Belle II have $426 \mathrm{fb}^{-1}$ for run 1. Aim to exceed $1 \mathrm{ab}^{-1}$ in 2024.
Okay, let's sit and wait for more data from SuperKEKB \&
Wait...... we actually already have " $1 \mathrm{ab}^{-1}$ " somere in Belle.

Why we shall do B1 + B2 analysis?

Belle's data set: $1 \mathrm{ab}^{-1}, \sim 2$ times of Belle Il's run 1 data set, $426 \mathrm{fb}^{-1}$

- Naive calculation, for Br measurement, $\sigma(\mathrm{stat}) \propto 1 / \sqrt{N}$

Why we shall do B1 + B2 analysis?

Not only about more statistics. Much more we can get by B1 +B2.

- Two individual experiments can allow us do cross-check on the results.
- We can understand B2 better by comparing to B1.
E.g. for $B \rightarrow J / \psi K_{L}$ study, by comparing the yields, something wrong with KLM. (now this bug is fixed)

JpsiKL/M(BB)	KLM	KLM+ECL	ECL	ALL
Belle II	2.6	1.2	6.4	10.3
Belle	5.1	1.9	6.0	12.9

A comparison between B1 and B2

*only related to physics analysis

- Data sample

sqrt(s) GeV	$\mathbf{Y}(\mathbf{1 S})$	$\mathbf{Y (2 S})$	$\mathbf{Y (3 S})$	$\mathbf{Y (4 S)}$	$\mathbf{Y (5 S)}$ and scan
Belle	102 M	158 M	13 M	$711 \mathrm{fb}^{-1}$	$121 \mathrm{fb}^{-1}$
Belle II	-	-	-	$362 \mathrm{fb}^{-1}$	$19 \mathrm{fb}^{-1}$

- Belle has unique sample of $\Upsilon(1 S) \Upsilon(2 S) \Upsilon(3 S)$
- 2 times of $\Upsilon(4 S)$ data sample.
- Belle and Belle II have different scan points. Not experts in quarkonium, but it's obvious to me we shall use both data samples.

A comparison between B1 and B2

*only related to physics analysis

- Data sample
- Detector

- Similar structure. $\sim 4 \pi$
- Different performance.

$$
B^{+} \rightarrow D\left(K_{S}^{0} K^{+} \pi^{-}\right) K^{+}
$$

A comparison between B1 and B2

*only related to physics analysis

- Data sample
- Detector
- MC simulation
- Geant 3 v.s. Geant 4
- Different generators
- Basf v.s. basf2
- Quite different. But, don't worry, we have B2BII. No need to learn how to use basf.
- About systematic
- Belle: almost won't change any more [ref]. Some experts are working on new PID or beam background MVA
- Belle II: under developed. you shall follow meetings/confluence pages.
- Trigger menu: have large impact on dark matter search
- ..

Other reasons for not using B1 data...

- You may say "I'm willing to use Belle data. But"
"I'm not in Belle collaboration. I may spend 6 months or longer to do B1+B2"
- Actually,

Don't worry. Not necessary to be in Belle.
I will show you all you need to do. (I hope I cover all steps.)

Other reasons for not using B1 data...

- You may say "I'm willing to use Belle data. But" "I'm not in Belle collaboration. I may spend 6 months or longer to do B1+B2"
"Belle collaboration may already publish the result"
- Actually,

Maybe they didn't use full Belle data set. Now we shall have better idea, improved reconstruction method, better bkg control, or external inputs changed so it's worth to redo.

The GNN-FT in B2 is implemented in B1!

Other reasons for not using B1 data...

- You may say "I'm willing to use Belle data. But" "I'm not in Belle collaboration. I may spend 6 months or longer to do B1+B2"
"Belle collaboration may already publish the result" "shall I need to have review procedure twice?"
- Actually,

No need. Nothing different in review procedure. One Review Committee in B2.

Only need to have B1 and B2 CWR in parallel.

Other reasons for not using B1 data...

- You may say "I'm willing to use Belle data. But" "I'm not in Belle collaboration. I may spend 6 months or longer to do B1+B2"
"Belle collaboration may already publish the result" "shall I need to have review procedure twice?" "where I shall ask question? Report issue?"
- Actually,

We have B2BII group meeting, monthly.
Indico: https://indico.belle2.org/category/67/
Maillist: software-b2bii@belle2.org
On B2question:

168 questions				Sort by \# date	activity $\overline{ }$	answ	votes	RSS @
Tagged bzbil \times								
Can I reconstruct pio from two gammas for pio veto in B2BII?						$\underset{\text { vote }}{1}$	1 answer	45
b2bii	veto	pio	inputMdstlist					
							Sep 14.3 fmeier	
Truth matching in b2bii						$\begin{gathered} \text { notes } \\ \text { votes } \end{gathered}$	$\underset{\text { answer }}{1}$	41 views

Other reasons for not using B1 data...

- You may say "I'm willing to use Belle data. But" "I'm not in Belle collaboration. I may spend 6 months or longer to do B1+B2"
"Belle collaboration may already publish the result" "shall I need to have review procedure twice?" "where I shall ask question? Report issue?"
- More reason/excuse?
- "Better to run than curse the road"
- Actually,

We have B2BII group meeting, monthly.
Indico: https://indico.belle2.org/category/67/
Maillist: software-b2bii@belle2.org
On B2question:

168 questions				Sort by» date	activity $\overline{ }$	answe	votes	RSS 込
Tagged bzbil \times								
Can I reconstruct pi0 from two gammas for pi0 veto in B2BII?						1	$\begin{gathered} 1 \\ \text { answer } \end{gathered}$	45
							Sep 14.3 fmeier	
Truth matching in b2bii						$\begin{gathered} \text { no } \\ \text { votes } \end{gathered}$	$\underset{\text { answer }}{1}$	41

Other reasons for not using B1 data...

- You may say "I'm willing to use Belle data. But" "I'm not in Belle collaboration. I may spend 6 months or longer to do B1+B2"
"Belle collaboration may already publish the result" "shall I need to have review procedure twice?" "where I shall ask question? Report issue?"
- Actually,

We have B2BII group meeting, monthly.
Indico: https://indico.belle2.org/category/67/
Maillist: software-b2bii@belle2.org
On B2question:

168 questions				Sort by» date	activity $\overline{ }$	answe	votes	RSS 込
Tagged bzbil \times								
Can I reconstruct pi0 from two gammas for pi0 veto in B2BII?						1	$\begin{gathered} 1 \\ \text { answer } \end{gathered}$	45
							Sep 14.3 fmeier	
Truth matching in b2bii						$\begin{gathered} \text { no } \\ \text { votes } \end{gathered}$	$\underset{\text { answer }}{1}$	41

Where to find B1 data / generic MC

- All on KEKcc.
- You shall also run it on KEKcc. (No need to use the busy grid!)

Total Integrated Luminosity ($\mathbf{f b}^{\mathbf{- 1}}$)

Exp
$7-27$
$7-65$
$\mathbf{3 1 - 5 5}$
$61-73$
$31-73$
$7-73$

Y4S/Off	Y1S/Off
$140.747 / 15.621$	$0 / 0$
$702.623 / 79.366$	$5.745 / 1.815$
$457.911 / 51.915$	$0 / 0$
$104.704 / 21.918$	$5.745 / 1.815$
$562.615 / 73.833$	$5.745 / 1.815$
$702.623 / 89.454$	$5.745 / 1.815$

Luminosity of Belle data

Y3S/Off	Y5S/Off
$0 / 0$	$0 / 0$
$2.922 / 0.246$	$23.182 / 1.73$
$2.922 / 0.246$	$23.182 / 0$
$0 / 0$	$97.879 / 1.73$
$2.922 / 0.246$	$121.061 / 1.73$
$2.922 / 0.246$	$121.061 / 1.73$

Scan	Total
0.281(1S)	156.38
0.029(1S)/0.076(3S)/6.518(5S)	824.533
0.076(3S)/0.168(5S)	536.42
0.029(1S)/0.024(2S)/27.406(5S)	288.088
0.029(1S)/0.24(2S)/27.574(5S)	824.507
0.029(1S)/0.24(2S)/0.076(3S)/27.574(5S)	980.417

Where to find B1 data / generic MC

Total Integrated Luminosity ($\mathbf{f b}^{\mathbf{- 1}}$)
Luminosity of Belle data

- All on KEKcc.
- You shall also run it on KEKcc. (No need to use the busy grid!)

Exp	Y4S/Off	Y1S/Off	Y2S/Off	Y3S/Off
$7-27$	$140.747 / 15.621$	$0 / 0$	$0 / 0$	$0 / 0$
$7-65$	$702.623 / 79.366$	$5.745 / 1.815$	$0 / 0$	$2.922 / 0.246$
$31-55$	$457.911 / 51.915$	$0 / 0$	$0 / 0$	$2.922 / 0.246$
$61-73$	$104.704 / 21.918$	$5.745 / 1.815$	$24.913 / 1.708$	$0 / 0$
$31-73$	$562.615 / 73.833$	$5.745 / 1.815$	$24.913 / 1.708$	$2.922 / 0.246$
$7-73$	$702.623 / 89.454$	$5.745 / 1.815$	$24.913 / 1.815$	$2.922 / 0.246$

Y5S/Off
$0 / 0$
$23.182 / 1.73$
$23.182 / 0$
$97.879 / 1.73$
$121.061 / 1.73$
$121.061 / 1.73$

Scan	Total
$0.281(1 \mathrm{~S})$	156.38
$0.029(1 \mathrm{~S}) / 0.076(3 \mathrm{~S}) / 6.518(5 \mathrm{~S})$	824.533
$0.076(3 \mathrm{~S}) / 0.168(5 \mathrm{~S})$	536.42
$0.029(1 \mathrm{~S}) / 0.024(2 \mathrm{~S}) / 27.406(5 \mathrm{~S})$	288.088
$0.029(1 \mathrm{~S}) / 0.24(2 \mathrm{~S}) / 27.574(5 \mathrm{~S})$	824.507
$0.029(1 \mathrm{~S}) / 0.24(2 \mathrm{~S}) / \mathbf{0 . 0 7 6 (3 S}) / 27.574(5 \mathrm{~S})$	980.417

- How to submit jobs on KEKcc.[ref]

```
bsub -q <queue name> "basf2 <your_working_script>"
```

- Queue: s for 6 hours job; I for 48 hours job; h for 240 hours job. [Morelnfo]

[xdshi@ccw01 ~]\$ date									
Mon Oct 30 13:30:40 JST 2023									
[xdshi@ccw01 ~]\$ bqueues -u xdshi									
QUEUE_NAME	PRIO	STATUS	MAX	JL/U	JL/P	JL/H	NJOBS	PEND	RUN
s	120	Open:Active	4000	1000	-	-	349	2	347
b_index	110	Open:Active	600	100	-	-	0	0	0
b_nagoya	110	Open:Active	600	100	-	-	0	0	0
1	100	Open:Active	-	1500	-	-	634	0	634
h	100	Open:Active	1500	300	-	-	294	0	294

- Not much jobs running at KEKcc!

Where to find B1 data / generic MC

- Belle File Search Engine (only accessible within KEK domain or via VPN)

Belle Fite Search Engine Ver 4.1

convertBelleMdstToBelleIIMdst('http://bweb3/montecarlo.php?ex=37\&rs=100\&re=200\&ty=evtgen-mixed\&dt=on_resonance\&bl=caseB\&st=0', path=mypath)
B2BII can directly read the process_url (and also full path of course).

Where to find B1 data / generic MC

- For $\Upsilon(4 \mathrm{~S})$, some personal scripts to run B1 data, generic MC(6 streams) on gitlab
 © README.md

source run.sh

Mdst files for each job are already set in the file of belle_fulldata/datalink/4S.datalink. Change it if you want to change the mdst files for each job.
main \downarrow forbellephysicsanalysis / RunB1Data / belle_fulldata / datalink / 4S.datalink [Find fildnctions.py)
(b) 4S.datalink 虑 61.00 KiB
http://bweb3/mdst.php?ex=7\&rs=6\&re=46\&skm=HadronBorJ\&dt=on_resonance\&bl=caseB http://bweb3/mdst. php?ex=7\&rs=47\&re=87\&skm=HadronBorJ\&dt=on_resonance\&bl=caseB http://bweb3/mdst.php?ex=7\&rs=88\&re=128\&skm=HadronBorJ\&dt=on_resonance\&bl=caseB http://bweb3/mdst.php?ex=7\&rs=129\&re=169\&skm=HadronBorJ\&dt=on_resonance\&bl=caseB 5 http://bweb3/mdst.php?ex=7\&rs=170\&re=210\&skm=HadronBorJ\&dt=on_resonance\&bl=caseB http://bweb3/mdst.php?ex=7\&rs=211\&re=251\&skm=HadronBorJ\&dt=on_resonance\&bl=caseB
7 http://bweb3/mdst.php?ex=7\&rs=252\&re=292\&skm=HadronBorJ\&dt=on_resonance\&bl=caseB 8 http://bweb3/mdst.php?ex=7\&rs=293\&re=333\&skm=HadronBorJ\&dt=on_resonance\&bl=caseB 9 http://bweb3/mdst.php?ex=7\&rs=334\&re=374\&skm=HadronBorJ\&dt=on_resonance\&bl=caseB 10 http://bweb3/mdst.php?ex=7\&rs=375\&re=415\&skm=HadronBorJ\&dt=on_resonance\&bl=caseB 11 http://bweb3/mdst.php?ex=7\&rs=416\&re=456\&skm=HadronBorJ\&dt=on_resonance\&bl=caseB 12 http://bweb3/mdst.php?ex=7\&rs=457\&re=497\&skm=HadronBorJ\&dt=on_resonance\&bl=caseB 13 http://bweb3/mdst.php?ex=7\&rs=498\&re=538\&skm=HadronBorJ\&dt=on_resonance\&bl=caseB 14 http://bweb3/mdst.php?ex=7\&rs=539\&re=579\&skm=HadronBorJ\&dt=on_resonance\&bl=caseB 15 http://bweb3/mdst.php?ex=7\&rs=580\&re=620\&skm=HadronBorJ\&dt=on_resonance\&bl=caseB 16 http://bweb3/mdst.php?ex=7\&rs=621\&re=661\&skm=HadronBorJ\&dt=on_resonance\&bl=caseB 17 http://bweb3/mdst.php?ex=7\&rs=662\&re=702\&skm=HadronBorJ\&dt=on_resonance\&bl=caseB 18 http://bweb3/mdst.php?ex=7\&rs=703\&re=743\&skm=HadronBorJ\&dt=on_resonance\&bl=caseB

How to generate B1 signal MC

- With B2BII."\$BELLE2_RELEASE_DIR/b2bii/examples/BelleMCGeneration.py"

\# Generation of Belle MC.

import basf2
from generators import add_evtgen_generator
\# Use B2BII local cache
basf2.conditions.metadata_providers = ["/sw/belle/b2bii/database/conditions/b2bii.sqlite"]
basf2.conditions.payload_locations = ["/sw/belle/b2bii/database/conditions/"]

Only generation!
Do simulation with basf script
\# Use B2BII global tag.
basf2.conditions.override_globaltags()
basf2.conditions.prepend_globaltag('b2bii_beamParameters_with_smearing')
\# Path.
main $=$ basf2.create_path()
\# Generate for experiment 55, run 0 (run-independent MC).
main.add_module('EventInfoSetter', expList=55, runList=0, evtNumList=100)
\# Add generator
add_evtgen_generator (path=main, finalstate='charged') add_evtgen_generator(path=mypath,
add_evtgen_generator(path=mypath,
finalstate="signal",
signaldecfile="user_defined_decfile.dec"
\# Add output.
main.add_module('BelleMCOutput', outputFileName='charged.dat')
)
\# Progress
main.add_module('Progress')
\# Generate events.
basf2.process(main)

How to generate B1 signal MC

- With B2BII."\$BELLE2_RELEASE_DIR/b2bii/examples/BelleMCGeneration.py"
- With basf scripts [ref].

A combined package for the generation and the simulation based on evtgen scripts and gsim scripts.
/home/belle/capid/public/mcproduzh.tar.gz

Copy the file and untar.
Two steps: "evtgen" and "gsim".
tar -zxvf mcproduzh.tar.gz
Two directories "evtgen" and "gsim" and one file "README" will appear. Please see "README".

When using the makeSummaryGsim script in the gsim folder user the -MC flag \rightarrow./makeSummaryGsim -MC log/*.log

How to read B1 MC/data with B2BII

- B2BII converts Belle MDST within basf2. No need to have extra ROOT file (Belle II MDST format). The converted data is to be analysed in same job.

The objects of B1 MC/data

Charged tracks			Neutral particles
Separation	basf	basf2	
K vs π	atc_pid (3,1,5,3,2).prob(...)	atcPIDBelle (3,2)	"pi0.mdst"
p vs π	atc_pid(3,1,5,4,2).prob(...)	atcPIDBelle (4,2)	- "K LO:mdst"
p vs K	atc_pid(3,1,5,4,3).prob(...)	atcPIDBelle $(4,3)$	- D Don't use fillParticleList and
electron vs hadron	eid.prob(3,-1,5)	eIDBelle	reconstruct pio, gamma.
muon likelihood	Muid_mdst.Muon_likelihood()	mulDBelle	
muon likelihood quality flag	Muid_mdst.Prerejection()	mulDBelleQuality	

The objects of B1 MC/data

```
V0 Particles
```

- "K_SO:mdst"
- "Lambda0:mdst"
- "gamma:v0mdst" for gamma conversion ee pair. The quality indicators for K_{S}^{0} and Λ as estimated by the findKs and nisKsFinder (for K_{S}^{0}), and FindLambda (for Λ^{0}) are available as

basf	basf2
findKs.goodKs()	extralnfo(goodKs)
nisKsFinder.nb_vlike()	extralnfo(ksnbVLike)
nisKsFinder.nb_nolam()	extralnfo(ksnbNoLam)
nisKsFinder.standard()	extralnfo(ksnbStandard)
findLambda.goodLambda()	extralnfo(goodLambda)

The vertex fit information of ve particles is also attached as extraInfo variables.

Handle converter and different objects (Optional)

- generalFunctions.py in BtoCharm WG scripts. (Not official B2BII codes. Just personal recommendation.)

```
"!".
Imports the input MC or data files of Belle or Belle II.
@param belle0rBelle2 for Belle or for Belle II
Read B1 or B2 inputs
@param belleOrBelle2 for Belle or for Belle II 
@param typeOfInput type of input file
@param path modules are added to this path
""""
if typeOfInput not in allowedInputFileTypes:
    b2.B2FATAL("The allowed input file types are 'data', 'mc', 'convertedData' or 'convertedMC'.")
    if belleOrBelle2 == "Belle":
        if typeOfInput in ['convertedData', 'convertedMC']:
            ma.inputMdstList(environmentType='Belle', filelist=fileList, path=path)
        else:
            b2bii. convertBelleMdstToBelleIIMdst(inputBelleMDSTFile=fileList, path=path)
    elif belle0rBelle2 == "Belle2":
        ma.inputMdstList(environmentType='default', filelist=fileList, path=path)
def setDefaultAliases(belle0rBelle2=str()):
Sets default aliases.
"""
if belle0rBelle2 == "Belle":
    vu._variablemanager.addAlias('PID_bin_kaon', 'atcPIDBelle(3,2)')
        vu._variablemanager.addAlias('PID_bin_pion', 'atcPIDBelle(2,3)')
    if belleOrBelle2 == "Belle2":
        vu._variablemanager.addAlias('PID_bin_kaon', 'ifNANgiveX(pidPairProbabilityExpert(321, 211, ALL), 0.5)')
        vu._variablemanager.addAlias('PID_bin_pion', 'ifNANgiveX(pidPairProbabilityExpert(211, 321, ALL), 0.5)')
```


Other things when run B1 with B2BII

```
For MC match
# Gets the options from the command line
if args.belleOrBelle2Flag == 'Belle' :
    if args.typeOfInput == 'mc' :
        ma.setAnalysisConfigParams({'mcMatchingVersion': 'Belle'}, path=main_path)
```

Note: if you have gamma: convertBelleMdstToBellellMdst(inputfile, generatorLevelMCMatching=True)

Set B2BII magics Some are setting Belle data base

```
if args.belleOrBelle2Flag == 'Belle' :
    print('BELLE2_EXTERNALS_DIR = ' + str(os.getenv('BELLE2_EXTERNALS_DIR')))
    print('BELLE2_EXTERNALS_SUBDIR = ' + str(os.getenv('BELLE2_EXTERNALS_SUBDIR')))
    print('BELLE2_EXTERNALS_OPTION = ' + str(os.getenv('BELLE2_EXTERNALS_OPTION')))
    print('BELLE2_EXTERNALS_VERSION = ' + str(Os.getenv('BELLE2_EXTERNALS_VERSION')))
    print('BELLE2_LOCAL_DIR = ' + str(Os.getenv('BELLE2_LOCAL_DIR')))
    print('BELLE2_RELEASE = ' + str(os.getenv('BELLE2_RELEASE')))
    print('BELLE2_OPTION = ' + str(Os.getenv('BELLE2_OPTION')))
    print('BELLE_POSTGRES_SERVER = ' + str(os.getenv('BELLE_POSTGRES_SERVER')))
    print('USE_GRAND_REPROCESS_DATA = ' + str(Os.getenv('USE_GRAND_REPROCESS_DATA')))
    print('PANTHER_TABLE_DIR - = ' + str(os.getenv('PANTHER_TABBLE_DIR')))
    print('PGUSER = ' + str(os.getenv('PGUSER')))
```


Other things when run B1 with B2BII

8.5.2. Full Event Interpretation

To utilize FEI, the correct prefix of FEI payloads needs to be set:

```
import fei
configuration = fei.config.FeiConfiguration(prefix='FEI_B2BII_light-2012-mino
feistate = fei.get_path(particles, configuration)
path.add_path(feistate.path)
```

For more details please see analysis/examples/FEI/B_converted_apply.py

8.5.3. Flavour Tagger

To apply flavour tagger in a b2bii analysis, one will need to append the correct global tag. FlavorTagger will call the corresponding payloads in the module.

import flavorTagger as ft

\# Flavour Tagger
weightfiles $=$ 'B2nunubarBG×1'
basf2. conditions. append_globaltag ("analysis_tools_light-2012-minos")
ft.flavorTagger(
particleLists=['B+:sig'], weightFiles=weightfiles, path=my_path

- Improved FEI weight files coming soon...
- Stay tuned.
- GNN-FT weight files coming soon...
- Stay tuned.

Other things when run B1 with B2BII

About HadronBJ skim

- \# of events to run "B2BIIConvertMdst" is less than the total numbers.

| Name \| Calls | Memory(MB) | Time(s) | Time(ms)/Call | |
| :---: | :---: |
| AnalysisConfiguration \| $500\|0\| 0.00 \mid 0.01+$ - 0.00 | |
| AnalysisConfiguration \| $500\|0\| 0 . \mathrm{eQ} \mid 0.01+-0.00$ | - Don't worry. Nothing wrong here. |
| B2BIIMdstlinput \| $500\|0\| 0.12 \mid 0.25+$ - 04 | - The loss is due to skim cut in fix_mdst |
| B2BIIFixMdst\|500|0 $0.10 \mid 0.21+-0.20$ | which is same as HadronBJ [ref] |
| B2BIIConvertMdst $\|490\| 6,511.11+1.05$ | |
| VariablesToHistogram $\|490\| 0\|0.01\| 0.01+$ - 0.01 | |
| Total \| 500 | 6 | $0.84 \mid 1.67+$ - 1.24 | |

B1's systematic uncertainties

Systematics

- Check Belle Systematic page.
- For some, scripts to calculate weights.

How to estimate your systematics

- Tracking efficiency (Updated June 14, 2011, Bipul Bhuyan, IIT G): Tracking efficiency result for high momentum tracks with Pt > $200 \mathrm{MeV} / \mathrm{c}$ has recently been updated (see (3) BN1165 and (3) latest talk) for experiment nos 7 to 71 . Based on this new study, we measured the difference in the tracking efficiency in data and MC to be $\mathrm{R}=(-0.13+-0.30+-0.10) \%$ per track. Since the ratio is much smaller than the statistical uncertainty, therefore, instead of applying this ratio as a correction, we recommend applying a systematic uncertainty of 0.35% per track. Once again, please note that this prescription is valid only for tracks with $\mathrm{Pt}>200 \mathrm{MeV} / \mathrm{c}$. For low momentum tracks, an additional systematic uncertainty from low momentum tracks study (see BN480) should be applied.
- Low momentum tracks efficiency: (1) latest BGM talk for $\pi+$ \& $\pi 0$, (1) BN1176
- (1) KID: data efficiencies, MC efficiencies, correction factors eff(data)/eff(MC) over (plab, cos θ) bins, obtained using inclusive D^{*} sample. (1) BAS talk for usage
- (1) K_S Efficiency and Systematic: (3) Belle Note 1207

New studies

- (3) LID: efficiency correction and systematic errors calculated from the comparison between the data and MC for $2 \gamma \rightarrow e \mathrm{e} / \mu \mu$.
- Asymmetries in the detector

1. (1) Charged kaon: Charged kaon asymmetry calculated by D decays
2. (1) Charged pion: Charged pion asymmetry calculated by D decays. (Under construction)

- Fake rate $(\{\pi, K, p\} \rightarrow\{e, \mu\})$
- Proton ID (see () BN1279)
- π° efficiency: (1) latest BGM talk
- Y efficiency

B1's systematic uncertainties

- Tracking [ref] : 0.35\% per track, for Pt > $200 \mathrm{MeV} / \mathrm{c}$
- $\mathrm{N}(\mathrm{BB})=N(B \bar{B})=(771.581 \pm 10.566) \times 10^{6}$ [ref]
- $\gamma: 2 \%$ for each [ref]
- $K_{S}^{0}:$ [ref] updated in bn 1437
- PID syst: Belle PID Joint Homepage

There are three groups of lookup tables in Belle:

- Lepton ID:
- Possible cuts for electron: $[0.01,0.10,0.50,0.60,0.80,0.90]$
- Possible cuts for muons: [0.10, 0.80, 0.90, 0.95, 0.97]
- Kaon/ π ID:
- PID cut can be 0.1-0.9
- Proton ID:
- Possible cuts for proton: [0.6, 0.7, 0.8, 0.9]

B1's systematic uncertainties

- PID corrections and systematic uncertainties.
- With "\$BELLE2_RELEASE_DIR/b2bii/examples/ApplyBelleWeights.py"

LID as an example
lid_table = "BelleLIDe_0.90"

The cut value.

```
va.variables.addAlias('LID_ratio', 'extraInfo('+lid_table+'_ratio)') COrreCtiOn Weight.
va.variables.addAlias('LID_ratio_stat_err', 'extraInfo('+lid_table+'_ratio_stat_err)')
va.variables.addAlias('LID_ratio_syst_err', 'extraInfo('+lid_table+'_ratio_syst_err)')
L Uncertainty of weight.(Syst)
va.variables.addAlias('LID_ratio_syst_err_from_2photon', 'extraInfo('+lid_table+'_ratio_syst_err_from_2photon)')
va.variables.addAlias('LID_ratio_syst_err_from_JPsi', 'extraInfo('+lid_table+'_ratio_syst_err_from_JPsi)')
va.variables.addAlias('LID_run_bin', 'extraInfo('+lid_table+'_run_bin)')
va.variables.addAlias('LID_kinematic_bin', 'extraInfo('+lid_table+'_kinematic_bin)')
lid_weights = ['LID_ratio',
    'LID_ratio_stat_err',
    'LID_ratio_syst_err',
    'LID_ratio_syst_err_from_2photon', }\longrightarrow\mathrm{ Variables stored into Ntuples,
    'LID_ratio_syst_err_from_JPsi'
    'LID_run_bin',
    'LID_kinematic_bin']
```

reweighter = b2.register_module('ParticleWeighting')
reweighter.param('tableName', lid_table)
reweighter.param('particleList', 'pi+:all')
my_path.add_module(reweighter)

B1's systematic uncertainties

- PID corrections and systematic uncertainties.
- With "\$BELLE2_RELEASE_DIR/b2bii/examples/ApplyBelleWeights.py"
- With the C++ code. Basf2 free. But need to get it from the webpage.

KID as an example
\#include "kid_eff_06.h"

```
class userana : public Module {
private:
    KID_eff_06 kideff1; // <-- !!
    KID eff-06 kideff2; l/ <-- !!
}
```

void userana: :init(int *) \{
kideff1.init(.6, 1, "track1", "kideff-2006-svd1-all.dat"); // <-- !! kideff2.init(.6, 1, "track2"', "kideff-2006-svd2-all.dat"); // <-- !! // 1st argument : probability cut varue (0.1, 0.2,...., 0.9.9) $/ / 2$ nd argument : $1=\operatorname{prob}(\mathrm{K} / \mathrm{pi})>0 . \mathrm{x}$ for kaon (kaon eff) // $2=\operatorname{prob}(\mathrm{K} / \mathrm{pi})>0 . \mathrm{X}$ for pion (pion fake) // $3=\operatorname{prob}(\mathrm{pi} / \mathrm{K})>0 . \mathrm{X}$ for pion (pion eff) // $\quad 4=\operatorname{prob}(\mathrm{pi} / \mathrm{K})>0 . \mathrm{X}$ for kaon (kaon fake) // where $0 . \mathrm{X}$ is the number given as 1st argument
// 3rd argument : name (anything is OK. but it should be different
\}

```
void userana::event(BelleEvent* evptr, int* status) \{
if(expno<30) kideff1.addtrack( plab, costheta ); // <-- !!
else kideff2.addtrack( plab, costheta ); // <-- !!
// You need to call these functions for events after selection criteria
\}
```


Output will be as follows (numbers here are just for explanation).
basfsh\% kid eff track1
basfsh\% kid_eff_track1
ratio $1.0028+-0.0148$ (ref. ratio 1.0019)
$\begin{array}{lll}\text { ratio } & 1.0028+-0.0148 \\ \text { data } & 0.9222+-0.0110\end{array}$
$\begin{array}{lll}\text { data } & 0.9222+- & 0.0110 \\ \text { MC } & 0.9241+- & 0.0011\end{array}$
used track: 4859 ignored track: 934
ref. ratio is the data/MC ratio assuming that MC is correct for invalid bins You may take the difference to the ratio (0.0009) as an additional systematic error (i.e. 0.0149 syst. error)

Many B1+B2 analysis ongoing

- "B1+B2" becomes more and more "popular".
- From Belle II Authorship confirmation page:
- Published: 2 ;Submitted:1 ; CWR: 2. (42 in total so 5/42 ~ 12\%!)
- Analyses before CWR: data are from group reports last week.
- (Semi)leptonic: > 2
- TDCPV: > 5
- EWP: > 5
- Charm: > 7
- Quarkonium: > 3
- ..

Examples $\left(B^{+} \rightarrow D\left(K_{S}^{0} h^{+} h^{-}\right) h^{+}\right)$

- First "B1+B2" physics paper $B^{+} \rightarrow D\left(K_{S}^{0} h^{+} h^{-}\right) h^{+}$(JHEP 02 2022, 063)

TABLE XL: Belle + Belle II hadronic parameters in a combined dataset of $(711+128.1) \mathrm{fb}^{-1}$

Parameter	Belle	Belle II	Belle + Belle II
δ_{B}	$(130.1 \pm 12.4)^{\circ}$	$\left(84.5_{-67.0}^{+50.9}\right)^{\circ}$	$\left(124.2_{-12.3}^{+12.7}\right)^{\circ}$
$r_{B}^{D K}$	0.144 ± 0.028	$0.079_{-0.062}^{+0.068}$	$0.130_{-0.026}^{+0.025}$
ϕ_{3}	$(79.3 \pm 11.0)^{\circ}$	$\left(75.3_{-64.6}^{+50.1}\right)^{\circ}$	$\left(77.8_{-11.1}^{+11.5}\right)^{\circ}$

> Previous Belle result $\quad\left[\begin{array}{l}\text { Phys. Rev. D } 85(2012) \\ \left.\frac{112014]}{+15.1}\right]\end{array}\right.$ $\phi_{3}=\left(77.3_{-14.9}^{+1.1} \pm 4.1 \pm 4.3\right)^{\circ}$ $r_{B}=0.145 \pm 0.030 \pm 0.010 \pm 0.011$ $\delta_{B}=(129.9 \pm 15.0 \pm 3.8 \pm 4.7)^{\circ}$,

- Only Belle II data set, large uncertainty on ϕ_{3}.
- Additional Belle II data set, "pull" $r_{B}^{D K}$ smaller (close to w.a.)
- Also an example: worth to re-do it even there is a Belle paper! (External inputs changed; better reconstruction method.)

Examples $(B \rightarrow \mu \nu)$

- Expected precision of one bkg channel: from $\sim 0.5 \times 10^{-4}$ (Belle II only) to $\sim 0.2 \times 10^{-4}$ (Belle and Belle II).

Examples $\left(D^{0} \rightarrow K_{S}^{0} K_{S}^{0}\right)$

- Signal yield $/ \mathrm{fb}^{-1}: 5.00 \pm 0.08$
γ represents the flight significance: key variable to identify from $K_{S}^{0} \pi^{+} \pi^{-}$

- Signal yield / fb ${ }^{-1}$: 5.16 ± 0.12

$$
\begin{aligned}
& \text { Final results (blinded): Preliminary } \\
& \mathrm{A}_{\mathrm{CP}}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \mathrm{~K}_{\mathrm{s}}\right) \text { in Belle: }(1.2 \pm 1.6 \text { (stat. }) \pm 0.1 \text { (syst.)) } \% \\
& \mathrm{~A}_{\mathrm{CP}}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \mathrm{~K}_{\mathrm{s}}\right) \text { in in signal is blinded using a random } \\
& \text { offset sampled between }[-0.1,0.1] .
\end{aligned}
$$

Examples $\left(B^{0} \rightarrow \gamma \gamma\right)$

Bellell-Note-PH-2023-061

Preliminary

	Belle	Belle II	Previous Belle
Luminosity	$711 \mathrm{fb}^{-1}$	$362 \mathrm{fb}^{-1}$	$104 \mathrm{fb}^{-1}$
Signal Efficiency	23.3%	30.8%	$11.7 \%[8]$

TABLE LVII: Performance comparison with previous Belle result.

- Got higher efficiency than previous Belle work. Did better work now!

Preliminary blinded result

Belle II	$\mathcal{B}\left(B_{d} \rightarrow \gamma \gamma\right)<7.55 \times 10^{-8}$ at $90 \% C L$
Belle	$\mathcal{B}\left(B_{d} \rightarrow \gamma \gamma\right)<5.00 \times 10^{-8}$ at $90 \% C L$
Belle + Belle II	$\mathcal{B}\left(B_{d} \rightarrow \gamma \gamma\right)<4.19 \times 10^{-8}$ at $90 \% C L$

Summary

- Using B1 data on basf2 is not that difficult.
- Let's add B1 data into our Belle II analyses, for better physics result!
- "How to"
- generate Belle signal MC,
- find Belle generic MC/data sample,
- get systematic uncertainties

Attend B2BII group meeting: get help/help b2bii!
Indico: https://indico.belle2.org/category/67/
Maillist: software-b2bii@belle2.org

