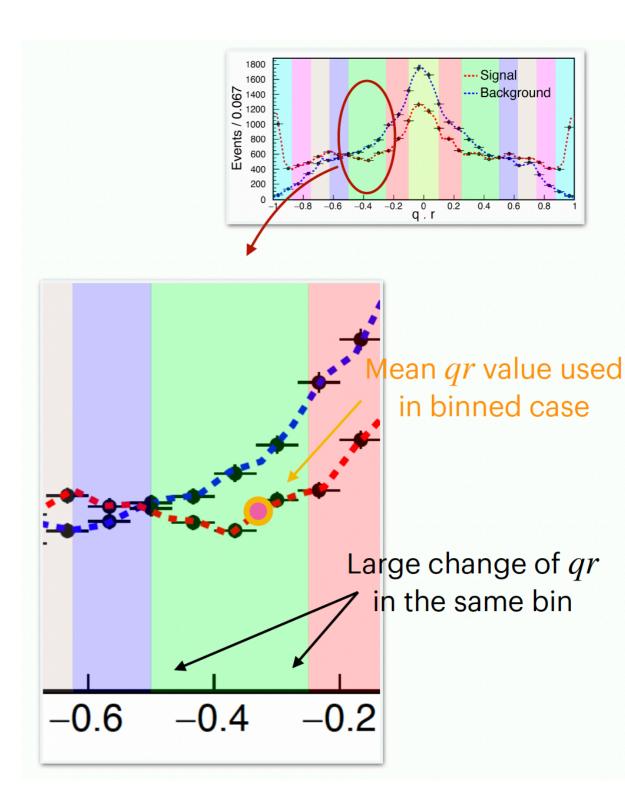
Per-event flavor tagger

M. Bertemes, <u>S. Raiz</u>


Flavor tagger in Belle II

qr in Belle II analyses was always binned.

qr can change a lot inside the same bin: taking mean value can be inaccurate.

Now, $B^0 \to \pi^0 \pi^0$ and $D^0 \to \pi^0 \pi^0$ analyses starting to explore use of event-per-event qr: not only maximally exploiting flavor tagger information (slightly better tagging-efficiency), but also further signal/background separation.

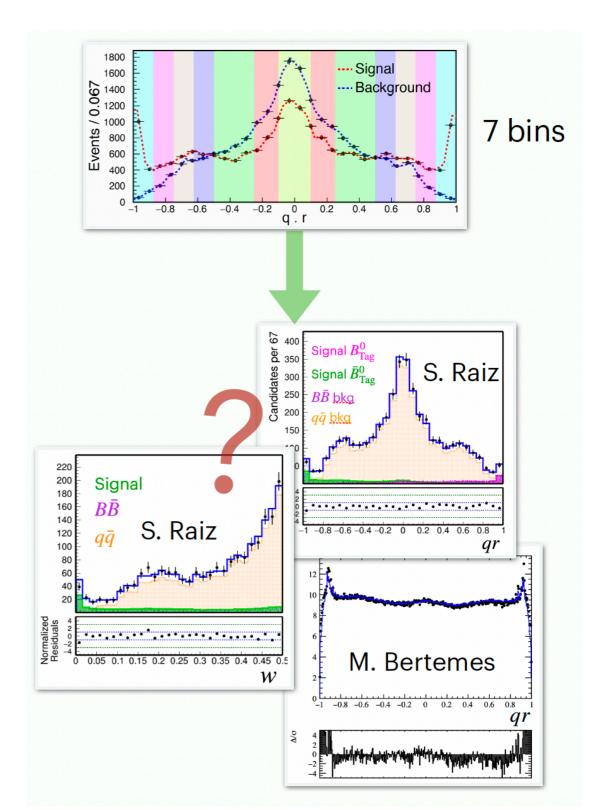
qr (or w) is directly taken from data and is an additional fit variable.

Binned → Unbinned

Investigated methods still not working: value is biased or no fit convergence.

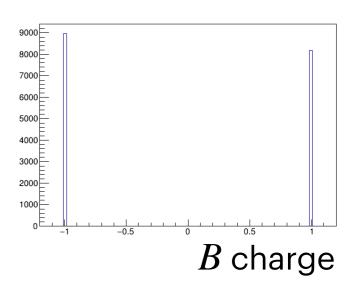
Technical or conceptual issue in Likelihood?

$$\mathcal{L} = \prod_{b=1}^{\text{Bins}} \left[\prod_{i=1}^{\text{Cand}} \left[BF \cdot \varepsilon_{sig} \left(\varepsilon_{sig}^b \right) n_{B\bar{B}} \cdot \left[1 + (1 - 2\chi_d) [q(1 + 2w_b)] A_{CP} \right] \cdot \mathcal{P}_{sig} \right] \right]$$


Fraction of events in Mean wrong-tag for the bin b the bin b

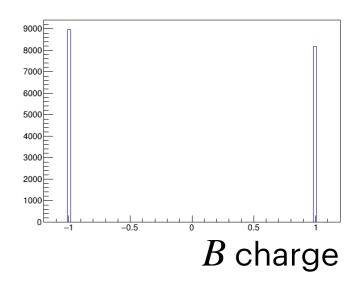
$$\mathcal{L} = \prod_{i=1}^{\text{Cand}} \left[BF \cdot \varepsilon_{sig} \cdot n_{B\bar{B}} \cdot \left[1 + (1 - 2\chi_d) [q(1 - 2w)] A_{CP} \right] \cdot \mathcal{P}_{sig} \left(\mathcal{P}_{sig}(w) \right) \right]$$

Mean wrong-tag for the event Pdf of w


Simplified Likelihood with only signal, $\Delta w=0$, $\mu=0$

Start from the basics

Let's consider the B^+B^- case:


$$N^{\pm} = \frac{1}{2}(1 \mp A_{CP})$$

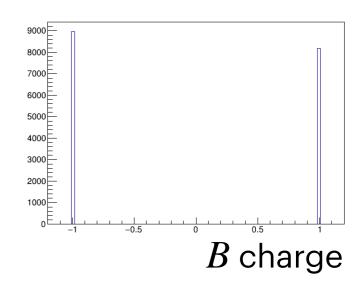
Start from the basics

Let's consider the B^+B^- case:

$$N^{\pm} = \frac{1}{2}(1 \mp A_{CP})$$

Pass to the $B^0\overline{B}{}^0$ case, considering a perfect flavor tagger:

$$N^{B^0, \overline{B}^0} = \frac{1}{2} (1 + q \cdot A_{CP})$$


$$q$$
 = charge of $B_{
m tag}$

Start from the basics

Let's consider the B^+B^- case:

1

$$N^{\pm} = \frac{1}{2}(1 \mp A_{CP})$$

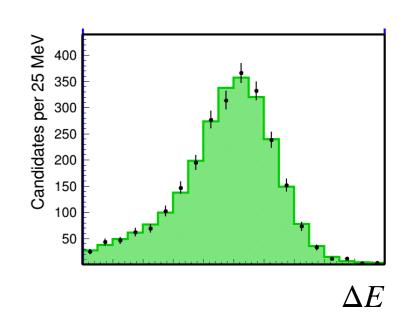
Pass to the $B^0\overline{B}{}^0$ case, considering a perfect flavor tagger:

(2)

$$N^{B^0, \overline{B}^0} = \frac{1}{2} (1 + q \cdot A_{CP})$$

q = charge of $B_{
m tag}$

In reality, there is some dilution factor r (let's not consider Δw , μ , ...):

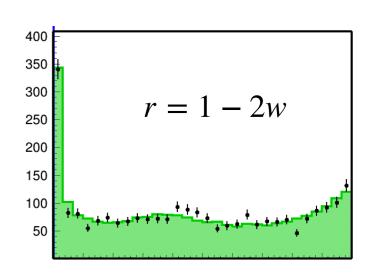

(3)

$$N^{B^0,\overline{B}^0} = \frac{1}{2}(1 + qr \cdot A_{CP})$$

Toy fitter

Consider a very simple fitter. Fit signalMC using ΔE as only variable.

$$\mathscr{L} = \prod_{i=1}^{\text{Cand}} \left[N_{\text{sig}} \cdot \mathscr{P}_{sig}(\Delta E) \right]$$



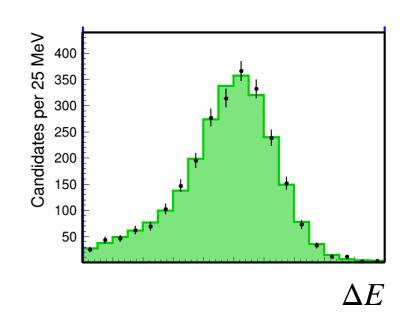
Add an asymmetry A:

2

$$\mathscr{L} = \prod_{i=1}^{\text{Cand}} \left[N_{\text{sig}} \cdot \left[1 + q \cdot A \right] \cdot \mathscr{P}_{sig}(\Delta E) \right]$$

and a diluition factor r:

 \mathcal{W}


3

$$\mathcal{L} = \prod_{i=1}^{\text{Cand}} \left[N_{\text{sig}} \cdot \left[1 + qr \cdot A \right] \cdot \mathcal{P}_{sig}(\Delta E) \cdot \mathcal{P}_{sig}(qr) \right]$$

Toy fitter

Consider a very simple fitter. Fit signalMC using ΔE as only variable.

$$\mathscr{L} = \prod_{i=1}^{Cand} \left[N_{\text{sig}} \cdot \mathscr{P}_{sig}(\Delta E) \right]$$

Add an asymmetry A:

2

$$\mathcal{L} = \prod_{i=1}^{Cand} \prod_{i=1}^{Cand} A \text{ results are biased wrt true value}$$

and a diluition factor r:

r = 1 - 2w r = 1 - 2w r = 1 - 2w r = 1 - 2w

W

(3)

$$\mathcal{L} = \prod_{i=1}^{Cand} \left[\underbrace{A}_{i=1}^{Cand} \right]_{A \text{ results are biased wrt true value}}^{Cand} \mathcal{L}_{sig}(qr)$$

Differences btw (1) and (2)

First two cases seem identical, but fitter implementation is different:

$$\mathbf{1}$$
 B^+B^- case

$$\mathcal{L} = \prod_{i=1}^{\text{Cand}^{+1}} \left[N_{\text{sig}} \cdot \left[\frac{1-A}{2} \right] \cdot \mathcal{P}_{sig}(\Delta E) \right]$$

$$\times \prod_{i=1}^{\text{Cand}^{-1}} \left[N_{\text{sig}} \cdot \left[\frac{1+A}{2} \right] \cdot \mathcal{P}_{sig}(\Delta E) \right]$$

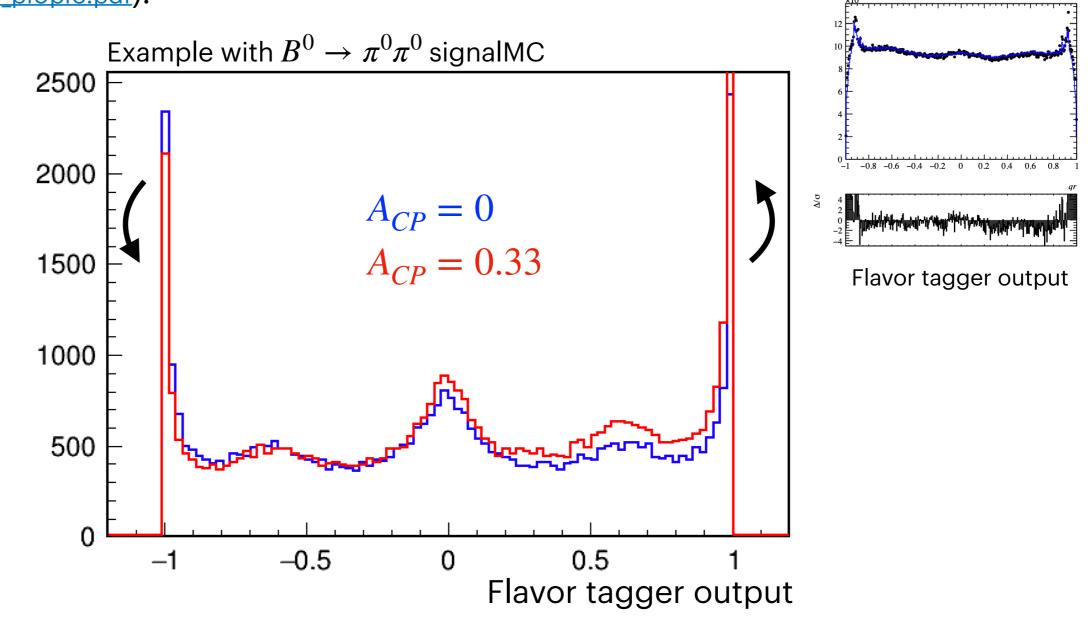
$$oldsymbol{2}$$
 $B^0 \overline{B}{}^0$ case

$$\mathcal{L} = \prod_{i=1}^{\text{Cand}} \left[N_{\text{sig}} \cdot \left[1 + q \cdot A \right] \cdot \mathcal{P}_{sig}(\Delta E) \right]$$

Simultaneous fit in two bins (charge=+1 and charge=-1).

No simultaneous fit. q is directly inserted in \mathcal{L} .

Logarithms of Likelihoods mathematically equivalent, but case (2) gives biased A. Maybe some bug in the code. Will check using configuration (1) to fit $B^0\overline{B}{}^0$ sample.

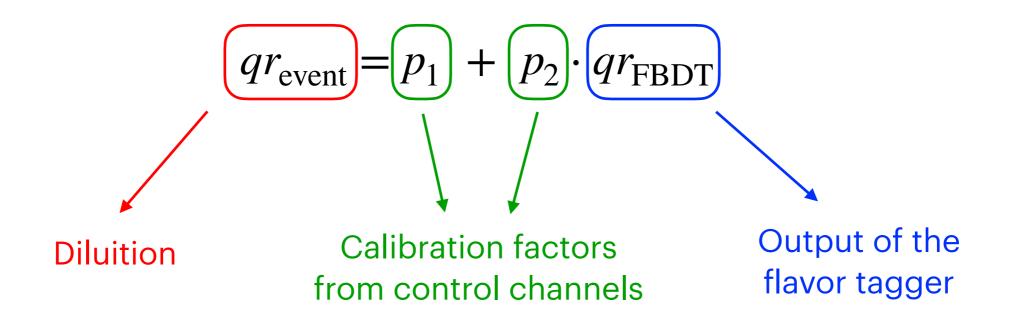

Challenge failed?

Yes, but also new ideas to investigate:

- Logarithm of Likelihoods (1) and (2) mathematically equivalent. Maybe some bug in the code. Will check using configuration (1) to fit $B^0\overline{B}{}^0$ sample.
- Extended ML fit does not converge, while non-extended does (with biased A).
 Need to understand why,

Michel's case

Use D^0 mass and qr as fit variables. Fit converges, but A_{CP} is biased because qr template has a fixed A_{CP} =0 (https://indico.belle2.org/event/9872/contributions/68321/attachments/24934/36867/b2qm_pi0pi0.pdf).



Reweight of the template inside the minimisation (based on scanned A_{CP}) could be the solution.

Backup

Calibration

Usual method employed by LHCb and charm flavor tagger:

