$B \rightarrow X_s \nu \bar{\nu}$ at Belle II

Cheolhun Kim, Junewoo Park

2023.11.03

1

Discussion

And I also consult with Yo Sato-san and Shun Watanuki-san

- For the analysis, signal MC sample is produced
- Hadronization process is done by Pythia in Evtgen

• How to estimate the uncertainty from the hadronization?

How can we properly estimate the uncertainty from the fragmentation? (ratio between decay modes)

from $B \to X_s J/\psi$: it is different physics from $B \to X_s \ell \overline{\ell}$: not so sensitive to estimate it

Or any theoretical method?

 $K, K\pi, K\pi\pi, \dots$

- It was not so easy to find a proper candidates from $B \to X_s J/\psi$: it is different physics from $B \to X_s \ell \overline{\ell}$: not so sensitive to estimate it
- Therefore, we decided to choose B → X_sγ decay well studied before produced by similar process (EWP)

• There can be difference between $B \to X_s \nu \bar{\nu}$ and $B \to X_s \gamma$

Actually, it is the reason why I was reluctant to use $B \rightarrow X_s J/\psi$

Example of this effect: M_{Xs} distribution

 \rightarrow To overcome this problem, corrections are applied for each M_{XS} region

Thank you, Yo Sato-san

• Fortunately, fragmentation is calculated with binned M_{XS} range

Type	Data fragmentation $(\%)$	Nominal $MC(\%)$	$\operatorname{Deviation}(\sigma)$	Calibrated MC(%)	Deviation(σ)
M_{X_s} All region (1.15, 2.8) GeV/c^2					
a	4.43 ± 0.33	8.20	11.3	4.89	1.39
b	$2.31{\pm}0.27$	4.37	7.72	2.49	0.66
с	$14.7 {\pm} 0.95$	12.7	-2.10	13.4	-1.30
d	21.9 ± 1.45	15.9	-4.14	20.0	-1.30
е	$6.12 {\pm} 0.71$	5.47	-0.92	6.57	0.63
f	18.6 ± 1.65	14.4	-2.55	21.5	1.80
g	$8.64{\pm}2.07$	10.4	0.85	12.2	1.73
h	19.7 ± 3.61	13.3	-1.77	14.5	-1.45
i	$1.59 {\pm} 0.54$	12.3	20.0	2.62	1.93
j	$2.05 {\pm} 0.30$	2.95	3.01	1.72	-1.10
M_{X_s} region1 (1.15, 1.5) GeV/c^2					
a	$10.6 {\pm} 0.69$	8.20	-3.48	13.1	3.54
b	$5.86 {\pm} 0.58$	4.37	-2.58	6.76	1.55
с	23.1 ± 1.28	12.7	-8.13	22.3	-0.65
d	44.3 ± 1.77	15.9	-16.0	34.0	-5.80
е	$0.46 {\pm} 0.29$	5.47	17.1	1.68	4.16
f	$9.96{\pm}1.17$	14.4	3.79	16.1	5.24
g	$0.52{\pm}0.37$	10.4	26.8	0.77	0.66
h	4.76 ± 1.14	13.3	7.49	4.75	-0.00
i	$0.35 {\pm} 0.09$	12.3	139	0.53	2.15
j	$0.00 {\pm} 0.00$	2.95	0	0.02	0
M_{X_s} region2 (1.5, 2.0) GeV/c^2					
a	$3.04{\pm}0.32$	8.20	16.2	3.78	2.33
b	1.10 ± 0.30	4.37	10.9	1.88	2.61

• So, what is the result?

• So, what is the result?

• So, what is the result?

Conclusion

low multiplicity mode shows a large discrepancy

 \rightarrow it is better to apply correction, instead of estimating large uncertainties

Then uncertainty of these correction factors are...

 \rightarrow uncertainties of fragmentation at $B \rightarrow X_s \gamma$

Challenge 2: $K^* - X_s$ transition

- There is a transition point between K^* and non-resonant X_s
- This point is set to be 1.1 ± 0.1 GeV
 - This value comes from $B \to X_s \ell \overline{\ell}$ study

However, there seems not to be theoretical/experimental reason $\frac{1}{2}$

Is ±0.1 GeV proper as the uncertainty?
How can we estimate proper uncertainty?
Can we find any theoretical/experimental estimation?

