Challenges in ϕ_{3} Combination＠Belle＋Belle II

Belle II Note：Note－PH－2023－024

Maillist：b2n－2023－024

Niharika Rout，Xiaodong Shi，Yi Zhang

Motivation

- In particle physics, we may measure same parameter of interests through a few different channels, from different experiments.
- Sometimes, we need to do combination among few different channels.

- If there is no combination, how to compare one SM point with several experimental results?

- For α / ϕ_{2} from isospin study, multi-favored solution from one channel. Combination may tell us a single solution!

About ϕ_{3} combination

- $\phi_{3}=\gamma=\arg \left(-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right)$, one angle of the CKM triangle.
- Current W.A.: $\phi_{3}=\left(66.2_{-3.6}^{+3.4}\right)^{\circ}[$ HFLAV], statistically uncertainty dominated.
- Theoretically clean, non-tree SM contribute $\sim 10^{-7}$ [arXiv:1308.5663]
- Experimental precision will achieve $<1^{\circ}$ by both LHCb and Belle II in next decades.

B decay	D decay	Method	$\begin{gathered} \text { Data set } \\ (\text { Belle }+ \text { Belle II }) \end{gathered}$	$\left[\mathrm{fb}^{-1}\right]$	
$B^{+} \rightarrow D h^{+}$	$D \rightarrow K_{\mathrm{S}}^{0} h^{-} h^{+}$	BPGGSZ	$711+128$	[JHEP 02	063 (2022)]
$B^{+} \rightarrow D h^{+}$	$D \rightarrow K_{\mathrm{S}}^{0} \pi^{-} \pi^{+} \pi^{0}$	BPGGSZ	$711+0$	[JHEP 10	178 (2019)]
$B^{+} \rightarrow D h^{+}$	$D \rightarrow K_{\mathrm{S}}^{0} \pi^{0}, K^{-} K^{+}$	GLW	$711+189$	[arxiv:230	.05048]
$B^{+} \rightarrow D h^{+}$	$D \rightarrow K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{0}$	ADS	$711+0$	[PRL 106	231803 (2011)]
$B^{+} \rightarrow D h^{+}$	$D \rightarrow K_{\mathrm{s}}^{0} K^{-} \pi^{+}$	GLS	$711+362$	[arxiv:230	6.02940]
$B^{+} \rightarrow D^{*} K^{+}$	$D \rightarrow K_{\mathrm{s}}^{0} \pi^{-} \pi^{+}$	BPGGSZ	$605+0$	[PRD 81	112002 (2010)]
$B^{+} \rightarrow D^{*} K^{+}$	$\begin{aligned} & D \rightarrow K_{\mathrm{s}}^{0} \pi^{0}, K_{\mathrm{s}}^{0} \phi, K_{\mathrm{s}}^{0} \omega \\ & K^{-} K^{+}, \pi^{-} \pi^{+} \end{aligned}$	GLW	$210+0$	[PRD 73	051106 (2006)]

- Many results on ϕ_{3} from Belle/Belle II, using different channels/methods.
- Why not combine them?
- A single ϕ_{3} is more natural.

Workflow

(1) Read all Belle/Belle II ϕ_{3} papers
(2) Construct a combined likelihood
(3) Find the solution with minimum -LLH

$$
f_{i}\left(\vec{A}_{i}^{\text {obs }} \mid \vec{\alpha}\right) \propto \exp \left(-\frac{1}{2}\left(\vec{A}_{i}(\vec{\alpha})-\vec{A}_{i}^{\text {obs }}\right)^{T} \underline{V_{i}^{-1}}\left(\vec{A}_{i}(\vec{\alpha})-\vec{A}_{i}^{\text {obs }}\right)\right)
$$

$$
V \text { covers uncertainties and correlations. }
$$

Sounds very easy, especially we have the available package from LHCb: GammaCombo.

In practice, still some challenges during the combination.

Challenge 1: asymmetric uncertainties

$$
f_{i}\left(\vec{A}_{i}^{\mathrm{obs}} \mid \vec{\alpha}\right) \propto \exp \left(-\frac{1}{2}\left(\vec{A}_{i}(\vec{\alpha})-\vec{A}_{i}^{\mathrm{obs}}\right)^{T} V_{i}^{-1}\left(\vec{A}_{i}(\vec{\alpha})-\vec{A}_{i}^{\mathrm{obs}}\right)\right)
$$

- In likelihood construction, use symmetric Gaussian.
- But sometimes, the measured observables are not.
e.g.

```
e.g.
```

$\mathcal{A}_{D K}=-0.39_{-0.28}^{+0.26}$ (stat) ${ }_{-0.03}^{+0.04}$ (syst),

$$
\mathcal{A}_{D \pi}=-0.04 \pm 0.11(\text { stat })_{-0.01}^{+0.02} \text { (syst) }
$$

$$
B^{+} \rightarrow D h^{+}, D \rightarrow K^{+} \pi^{-}
$$

Phys. Rev. Lett. 106 (2011) 231803

Challenge 2: irregular correlation

$$
f_{i}\left(\vec{A}_{i}^{\mathrm{obs}} \mid \vec{\alpha}\right) \propto \exp \left(-\frac{1}{2}\left(\vec{A}_{i}(\vec{\alpha})-\vec{A}_{i}^{\mathrm{obs}}\right)^{T} V_{i}^{-1}\left(\vec{A}_{i}(\vec{\alpha})-\vec{A}_{i}^{\mathrm{obs}}\right)\right)
$$

- In likelihood construction, the correlation is described by the matrix.
- But sometimes, the correlation is more complex. Not just simple ellipse.
e.g.

	x_{+}	y_{+}	x_{-}	y_{-}
x_{+}	1	0.486	0.172	-0.231
y_{+}		1	-0.127	0.179
x_{-}			1	0.365
y_{-}				1

Matrix used in the combination.

$$
\begin{gathered}
B^{+} \rightarrow D h^{+}, D \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \pi^{0} \\
\text { JHEP 10(2019)178 }
\end{gathered}
$$

Challenge 3: unknown correlation in some results

- Some results didn't provide the correlation matrix in their paper.
- How to include these results properly in the combination?

The ideal solution to challenge $1 / 2$

$$
f_{i}\left(\vec{A}_{i}^{\mathrm{obs}} \mid \vec{\alpha}\right) \propto \exp \left(-\frac{1}{2}\left(\vec{A}_{i}(\vec{\alpha})-\vec{A}_{i}^{\mathrm{obs}}\right)^{T} V_{i}^{-1}\left(\vec{A}_{i}(\vec{\alpha})-\vec{A}_{i}^{\mathrm{obs}}\right)\right)
$$

- The most ideal solution is using the entire likelihood function, not just Gaussian function.
- So the irregular correlation, asymmetric uncertainties are included in the combination.

- In practice, such information are lost. "The student graduated." "The result was 10 years ago. No files are left." etc.
- Let's see the compromise solution in ϕ_{3} combination...

Solution to challenge 1: asymmetric uncertainties

- Symmetrize it!
- Generate toy MC samples with asymmetric Gaussian.
- Take the standard width of the sample as a new uncertainty.
- Keep the origin mean value unchanged, as it's the point with maximum likelihood.

	$B^{ \pm} \rightarrow D \pi^{ \pm}$	$B^{ \pm} \rightarrow D K^{ \pm}$
x_{+}	$0.039 \pm 0.024_{-0.013}^{+0.018}{ }_{-0.012}^{+0.014}$	$-0.030 \pm 0.121{ }_{-0.018}^{+0.017}{ }_{-0.018}^{+0.019}$
y_{+}	$-0.196_{-0.059}^{+0.080}{ }_{-0.034}^{+0.038}{ }_{-0.030}^{+0.032}$	$0.220_{{ }_{-0.541}^{+0.182} \pm 0.032}^{+0.072}$
x_{-}	$-0.014 \pm 0.021_{-0.010}^{+0.018}+0.019$	$0.095_{-0.010}^{+0.121}{ }_{-0.016}^{+0.017}{ }_{-0.025}^{+0.023}$
y_{-}	$-0.033 \pm 0.059_{-0.019}^{+0.018}{ }_{-0.010}^{+0.019}$	$0.354_{-0.197}^{+0.144}{ }_{-0.021}^{+0.015}{ }_{-0.049}^{+0.032}$

More discussion about asymmetric uncertainty [arXiv:physics/0401042] Thanks Lu Cao.

Solution to challenge 2: irregular correlation

- We can't get the full information, not just these contours.
- Still use correlation matrix only. Nothing we can do.

- Lucky thing: $B^{+} \rightarrow D h^{+}, D \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \pi^{0}$ contribute little in this ϕ_{3} combination.
- Lesson here: if the correlation is quite irregular. Better to save the full information, so your result will be used correctly by others.

Solution to challenge 3: unknown correlation in some results

- Try contact the author first!
- Solution, if the information is really lost:
- assign 0 correlation for the nominal result.
- Vary correlation up to ± 0.9 to check possible bias; take the maximum bias as additional systematic uncertainty.

- additional uncertainties to cover this missing correlation: $\left(78.6_{-7.2-1.1}^{+6.8+2.4}\right)^{\circ}$
- Lucky, the bias are not much.
- Lessons: if you measure multiobservables, check the correlation and report it! Make your result more precise.

Summary

- Several issues and compromise solutions in combination ϕ_{3} study.
- Reminder:
- if you measure more than one observable, don't forget check the correlation and report the correlation matrix;
- if the correlation is non-trivial, store the entire shape of likelihood scan for future precise combination.

