
How to use our SW and DP tools

Giacomo De Pietro
Giulio Dujany

Stefano Lacaprara
Umberto Tamponi

Physics week
KEK, October 31st  2023

1



Introduction

2



From detector to analysis

H
ig

h 
le

ve
l t

rig
ge

r (
H

LT
)

R
aw

-L
ev

el
 s

ki
m

m
in

g

all events

O
ffl

in
e 

pr
oc

es
si

ng

Sk
im

m
in

g

all 
mDST

had. 
mDST

HLT 
hadron 
events

Fr
om

 d
et

ec
to

r uDST

uDST

uDST

uDST



From detector to analysis

H
ig

h 
le

ve
l t

rig
ge

r (
H

LT
)

R
aw

-L
ev

el
 s

ki
m

m
in

g

all events

O
ffl

in
e 

pr
oc

es
si

ng

Sk
im

m
in

g

all 
mDST

had. 
mDST

HLT 
hadron 
events

Fr
om

 d
et

ec
to

r uDST

uDST

uDST

uDST

mDSTs and uDSTs will always be available



Data overview

Reprocessings (procXX)
- Old data re-calibrated and reprocessed with the latest release

Prompt processing (prompt, buckets)
- New data, calibrated and processed in “real time”
- Available during data taking, with ~ 1 month of delay
- Use the latest major release 

The latest proc and 
prompt are always 
provided with the 

same major release



MC overview

Si
m

ul
at

io
n

Sk
im

m
in

g

mDST

Each physical process (qqbar, B+B-, μμμμ …) requires 
a different generator. We have to make a cocktail 
producing them separately

Generic MC = cocktail of all basic processes
- Produced by default

Signal MC = the specific process for your analysis
- Produced according to the WG needs
- Additional requests are always welcome

uDST

uDST

uDST

uDST



MC overview

Process Streams

qqbar (uubar+ddbar+ssbar+ccbar) 4

mixed 4

charged 4

taupair 4

mumu 4

ee 0.1

gg 2

eemumu 1

eeee 1

llXX 1

hhISR 1

BB* + B*B* (4)

Run-independent MC  (MCri)
- Default channel masking and detector conditions 
- Simulated backgrounds, same level for all events
- exp = 0 (full lumi),  1003 (early phase 3), 1004 (phase 3)
- Luminosity = 1 ab-1

Run-dependent MC  (MCrd)
- Same masking and conditions as in data
- Realistic background from random triggers
- Events generated for all runs proportionally to the real data 

luminosity



Production flow

We aim to produce data and MC at the same pace 
- You should see data and MC appearing more or less at the same time during data taking



How to run your analysis

9



General guidelines

Do development only locally

Run on as little events as possible

Re-run as little times as possible

Bookmark these pages:
https://confluence.desy.de/display/BI/GBasf2+Troubleshooting
https://gbasf2.belle2.org/  

https://confluence.desy.de/display/BI/GBasf2+Troubleshooting
https://gbasf2.belle2.org/


My analysis: testing

You most certainly WANT to test your code locally before submitting thousands jobs to the grid! 

gbasf2 has scouting enabled, to protect against this kind of massive failures, but you don’t want to 
submit O(10k) jobs just to find afterward that you forget a comma in your steering.

1) Get one file from grid via gb2_ds_get:

gb2_ds_search collection --list_datasets /belle/collection/Data/proc13_had_4S_v3

gb2_ds_search dataset --campaign MC15ri_b --data_type mc --mc_event 1110062100 --bkg_level BGx1

2) Use the data and MC available on the dataprod/ disk at KEKCC:
/group/belle2/dataprod/new/[MC,Data]/



My analysis: How  to find data

Go to the main data page: 
https://confluence.desy.de/display/BI/Data+Production+WebHome 

https://confluence.desy.de/display/BI/Data+Production+WebHome


My analysis: How  to find data

Go to the main data page: 
https://confluence.desy.de/display/BI/Data+Production+WebHome 

Your entry point

Detailed info

https://confluence.desy.de/display/BI/Data+Production+WebHome


Skims

Skim:  A rough selection of your input sample, which allow to run your refined selection much 
faster

Kind of skims:
- HLT skim: several skim for calibration purposes + hlt_hadron
- Physics skim: analysis-dedicated skim, which can run on unskimmed sample or on 

hlt_hadron skimmed sample

Skims are the most efficiency way to go
- You don’t run on events that would never pass your selection
- Files are merged to minimize their number

Know you skim/DP liaison. They know how to navigate through DP 

Go to https://confluence.desy.de/display/BI/Skim+Production+Status and check if there is a skim 
for you

Follow the instructions (they change over time)

https://confluence.desy.de/display/BI/Skim+Production+Status


Skims

Skims are:
- Prepared by any collaborator who needs them, with the help of the DP liaison of the WG
- Run by default on both data and MC. 
- If you need to skim a signal MC, do it on the fly in analysis or ask your DP liaison

# Check the skim output
from skim.WGs.tdcpv import TDCPV_ccs  # pick your favourite skim
 
skim_ccs = TDCPV_qqs(udstOutput=False)  # pass udstOutput=False to disable udstOutput
skim_ccs(path=my_path)
var.addAlias("skim_ccs", f"{skim_ccs.flag}")
 
# then save "skim_ccs" in your final tree



Analyzing data: the grid & gbasf2

Data are distributed over many different centers on a computing  grid

● Many networked loosely 
computers.

● Data centers keep two copies 
of the full raw data set.

● Raw data is staged, 
reprocessed, skimmed and 
distributed over sites.

● Analysers access data 
sending jobs to the grid and 
downloading the output. 



Analyzing data: the grid & gbasf2

The computing group provides an extensive documentation of gbasf2 and all the tools included: 
gbasf2.belle2.org

Please check it regularly: gbasf2 developers are always including new features!

https://gbasf2.belle2.org


What if I need help?

If you need help, you are invited to use questions.belle2.org, but please try to follow these few “rules” for 
increasing the chances to receive a quick answer:

https://questions.belle2.org/


What if I need help?

If you need help, you are invited to use questions.belle2.org, but please try to follow these few “rules” for 
increasing the chances to receive a quick answer:

A common error is cutting-and-pasting only part of the error message (if any):
if you are not sure what’s the relevant part of the log to be included, attach the full log as a file!

https://questions.belle2.org/


Tips & tricks

20



My analysis: look at your logs
After having tested locally your steering file, please, PLEASE, check your log file:
is your job producing one or more [INFO] or [WARNING] messages per event?

If yes:
- if your job produces a tons of [WARNING] messages probably you are doing something wrong

- check carefully the messages and which module is printing them!
- a job producing too many messages will likely crash on the grid

- there is an hard limit on the log size produced by a grid job!



My analysis: look at your logs
After having tested locally your steering file, please, PLEASE, check your log file:
is your job producing one or more [INFO] or [WARNING] messages per event?

If yes:
- if your job produces a tons of [WARNING] messages probably you are doing something wrong

- check carefully the messages and which module is printing them!
- a job producing too many messages will likely crash on the grid

- there is an hard limit on the log size produced by a grid job!

If you verify that you are not doing anything wrong (sometimes WARNING messages thrown by basf2 are 
false-positive), then you have to suppress these messages:

import basf2
basf2.set_log_level(basf2.LogLevel.ERROR)  # this suppresses both INFO and WARNING messages



My analysis: look at your logs
After having tested locally your steering file, please, PLEASE, check your log file:
is your job producing one or more [INFO] or [WARNING] messages per event?

If yes:
- if your job produces a tons of [WARNING] messages probably you are doing something wrong

- check carefully the messages and which module is printing them!
- a job producing too many messages will likely crash on the grid

- there is an hard limit on the log size produced by a grid job!

If you verify that you are not doing anything wrong (sometimes WARNING messages thrown by basf2 are 
false-positive), then you have to suppress these messages:

import basf2
basf2.set_log_level(basf2.LogLevel.ERROR)  # this suppresses both INFO and WARNING messages

If you are flooded by ERROR messages:
- it is very likely that you are doing something very wrong
- and you can not suppress them!



My analysis: counting your events

When you submit your project you get a print of the number of events
- If you forgot, just run a dry project with --dry

Running  gbasf2 -n 1 steering_etaSelection.py -p UThhbeta_mixed_Md15_test -i 
/belle/collection/MC/MC15rd_mixed_exp21_5S_scan_v1 -s light-2305-korat --force --dry

************************************************
*************** Project summary ****************
** Project name: UThhbeta_mixed_Md15_test
** Dataset path: /belle/user/tamponi/UThhbeta_mixed_Md15_test
** Steering file: steering_etaSelection.py
** Job owner: tamponi @ belle (23:53:17)
** Preferred site / SE: None / DESY-TMP-SE
** Input files for first job: 
LFN:/belle/MC/release-06-00-12/DB00002335/MC15rd_a/prod00028853/s00/e0021/5S_scan/r00083/m
ixed/mdst/sub00/mdst_000001_prod00028853_task2082000001.root
** Number of input files: 275
** Number of jobs: 275
** Processed data (MB): 166380
** Processed events: 15304731 events
** Estimated CPU time per job: 928 min
************************************************



My analysis: counting your events

When you submit your project you get a print of the number of events
- If you forgot, just run a dry project with --dry

Include an event-counting histogram in your steering file

import modularAnalysis as ma

ma.variablesToHistogram(decayString = '',
                        variables_2d=[('expNum', 30, 0, 30), ('runNum', 1500, 0, 15000)],
                        filename='ntuple.root', 
                        path=my_path)

gb2_ds_count_events



My analysis: CPU time

When you submit your job on the grid, you need to pass the expected execution time per event (evtpersec) of 
your job:

- by default, gbasf2 set a large time (to be on the safe side)
- passing a “realistic” execution time allows the grid to correctly schedule your job and “prioritize” them

How to estimate the execution time per event?
- download at KEKCC one file of your signal sample
- execute your steering file at KEKCC submitting a job on the KEKCC batch system with bsub
- take the CPU time from the bsub log

Resource usage summary:
    CPU time :    20.07 sec.  <-- this is the number you need

- compute the CPU time per event via evtpersec = nevents / (20 * <CPU time from the bsub log>)
- submit your job via gbasf2 using --evtpersec <evtpersec>



My analysis: many analyses in one job

Save multiple trees in one output file:

import modularAnalysis as ma

ma.reconstructDecay('B0:JpsiKS -> J/psi K_S0', cut='', path=my_path)
ma.variablesToNtuple(

decayString='B0:JpsiKS',
variables=['Mbc'],
treename='JpsiKS',
filename='ntuple.root',  # same filename here
path=my_path)

ma.reconstructDecay('B+:JpsiKp -> J/psi K+', cut='', path=my_path)
ma.variablesToNtuple(

decayString='B+:JpsiKp',
variables=['Mbc'],
treename='JpsiKp',
filename='ntuple.root',  # and here!
path=my_path)

More trees you add to your output files, less projects (= jobs) you need to submit via gbasf2!



Using your MVA weightfile on grid
You may be tempted to ship your weightfile via gbasf2 input sandbox, but:
if the weightfile is large (O(Mb) or more), it may create issues on the whole grid system!



Using your MVA weightfile on grid
You may be tempted to ship your weightfile via gbasf2 input sandbox, but:
if the weightfile is large (O(Mb) or more), it may create issues on the whole grid system!

How to correctly use it on grid?
long story short: look at my notes here

long story long: you need to learn:
- how to use a generic MVA weightfile with a basf2 job
- how to upload it on the Conditions Database

https://notes.desy.de/mF5n5naJTEqLOpbDoucOjA?view


Using your MVA weightfile on grid
How to use a generic MVA weightfile with a basf2 job

You can store as payload (almost) any file. This is an example for dumping a “raw” file into a payload (in this case, a 
JSON file “a_dictionary.json”):

import basf2

# Here we do our black magic
# first: we import ROOT (ah, such lovely library)
import ROOT  # noqa

# second: we invoke the Database class
db = ROOT.Belle2.Database.Instance()

# third: we define an interval-of-validity
# note the arguments of IntervalOfValidity() are
# experiment-low, run-low, experiment-high, run-high numbers
# IntervalOfValidity(int experimentLow, int runLow, int experimentHigh, int runHigh)
iov = ROOT.Belle2.IntervalOfValidity(0, 0, -1, -1)

# fourth: we store the file as payload into a local database
# note that the arguments of 'Database::addPayload()' are
# payload name, path to the file to store, interval-of-validity
db.addPayload('ADictionaryJSON', basf2.find_file('a_dictionary.json'), iov)



Using your MVA weightfile on grid
How to use a generic MVA weightfile with a basf2 job

After having executed the previous snippet, a folder localdb is created locally. Such folder contains:

● a file called database.txt (which is the so-called local database);
● a file called dbstore_ADictionaryJSON_rev_bea927.root (which is the so-called payload).

Running cat localdb/database.txt returns dbstore/ADictionaryJSON bea927 0,0,-1,-1:

● ADictionaryJSON is the payload name;
● bea927 is the payload checksum;
● 0,0,-1,-1 is the payload interval-of-validity.

○ the values here are: int experimentLow, int runLow, int experimentHigh, int runHigh



Using your MVA weightfile on grid
How to use a generic MVA weightfile with a basf2 job

It is rather straighforward to use the payload in a custom basf2 module (e.g.: a basf2 module written in Python):

import basf2

class ReadJSONFromCDB(basf2.Module):
    # Loading the database object in beginRun() ensures that, in case of run-dependent or
    # experiment-dependent payloads, the framework correctly loads them.

    def beginRun(self):
        import ROOT  # noqa
        # The payload name must be 'ADictionaryJSON' as before
        self.a_dictionary_dbobject = ROOT.Belle2.DBAccessorBase(
            ROOT.Belle2.DBStoreEntry.c_RawFile, 'ADictionaryJSON', True

  )
        # This is the actual payload (namely: the path to the payload)
        self.a_dictionary_payload = self.a_dictionary_dbobject.getFilename()

    def event(self):
        # Here you simply use the object self.a_dictionary_payload as you wish

  with open(self.a_dictionary_payload) as a_dictionary_json:
      ...



Using your MVA weightfile on grid
How to upload the MVA weightfile on the Conditions Database

You need to:

- basf2_mva_upload/basf2_mva_add_to_local_database if you have an XML weighfile created with our MVA package (e.g. 
from FastBDT)

- b2conditionsdb-tag-create for creating a globaltag: the globaltag must start with user_USERNAME_ or temp_USERNAME_, 
where USERNAME is your b2mms username

- b2conditionsdb-upload for uploading your payloads to the globaltag created in the previous step
- b2conditionsdb-tag-state for changing the globaltag state to TESTING (basf2 crashes if you try to use an OPEN globaltag)


