

#### MAY 30, 2023

## UNDERESTIMATION OF " $D \rightarrow K_L^0$ -LIKE" DECAYS IN SEMILEPTONIC *B*-MESON DECAYS @ GENERATOR-LEVEL

Henrik Junkerkalefeld

\* = junkerkalefeld@physik.uni-bonn.de





So everything that follows is expected to be **equally relevant for MC15**.



Henrik Junkerkalefeld / Missing  $D \to K_L^0$  in  $B \to X \ell \nu$  events

## FACTS ABOUT OUR CURRENT $X\ell\nu$ MODELING



- Our inclusive, semileptonic  $B \to X_c \ell \nu$  modeling only poorly agrees with data.
- Data has a higher fraction of events with: low  $M_X$ , high  $M_{\rm miss}^2$ , and low multiplicities
- This effect is **mode dependent** (see following slides) and does not correlate to suspicious phase spaces w.r.t. detector efficiency mismodeling (not exclusive to low momentum tracks or low energy clusters).

#### > Assumption: Generator level issue caused by mismodeling of (hadronic) D decays

## FACTS ABOUT D DECAY MODELING

- The inclusive  $D \to K_L^0 + X$  decays are
  - **not known** in the PDG (only  $D \to K^0$ , but high unc.)
  - **NOT just the sum of exclusive**  $D \to K_L^0 \dots$ , they include stuff like  $D \to [K^* \to K^0 \dots] \dots$
  - underrepresented in our MC(14&15). It's on the lower edge or below their sizeable uncertainty.
    - An increase of  $D \rightarrow K^0$  decays of 20-25% (D<sup>0</sup>: 40  $\rightarrow$  50%, D<sup>+</sup>: 57.5  $\rightarrow$  66%) is covered by the PDG uncertainties.
- Branching fractions are a big piece of the puzzle (particularly  $D \rightarrow K_{\rm L}^0 X$ ), but cannot solve it entirely
- The **phase-space modeling** used in ≈ 40% of the *D* decays is significant/unfixable
- The PDG inclusive and exclusive BFs cannot be reconciled

|                       | PI             | DG                    | MC           |                       |  |
|-----------------------|----------------|-----------------------|--------------|-----------------------|--|
| Decay                 | $D^0$ BF / %   | D <sup>+</sup> BF / % | $D^0$ BF / % | D <sup>+</sup> BF / % |  |
| <i>K</i> <sup>-</sup> | $54.7 \pm 2.8$ | $25.7 \pm 1.4$        | 56.1         | 30.5                  |  |
| $K^0  /  ar{K}^0$     | $47 \pm 4$     | $61 \pm 5$            | 40.0         | 57.5                  |  |
| $K^+$                 | $3.4 \pm 0.4$  | $5.9 \pm 0.8$         | 3.7          | 7.0                   |  |
| $K^{*,-}$             | 15 ± 9         | 6 ± 5                 | 12.7         | 4.6                   |  |
| $ar{K}^{*,0}$         | $9 \pm 4$      | $23 \pm 5$            | 0.1          | 10.3                  |  |
| $K^{*,0}$             | $2.8 \pm 1.3$  | < 6.6                 | 9.1          | 19.5                  |  |

## FACTS ABOUT D DECAY MODELING

- The inclusive  $D \to K_L^0 + X$  decays are
  - **not known** in the PDG (only  $D \to K^0$ , but high unc.)
  - **NOT just the sum of exclusive**  $D \to K_L^0 \dots$ , they include stuff like  $D \to [K^* \to K^0 \dots] \dots$
  - underrepresented in our MC(14&15). It's on the lower edge or below their sizeable uncertainty.
    - An increase of  $D \rightarrow K^0$  decays of 20-25% (D<sup>0</sup>: 40  $\rightarrow$  50%, D<sup>+</sup>: 57.5  $\rightarrow$  66%) is covered by the PDG uncertainties.
- Branching fractions are a big piece of the puzzle (particularly  $D \rightarrow K_{\rm L}^0 X$ ), but cannot solve it entirely
- The **phase-space modeling** used in  $\approx 40\%$  of the *D* decays is significant/unfixable
- The PDG inclusive and exclusive BFs cannot be reconciled

|                       | PI             | )G                    | MC           |                       |  |
|-----------------------|----------------|-----------------------|--------------|-----------------------|--|
| Decay                 | $D^0$ BF / %   | D <sup>+</sup> BF / % | $D^0$ BF / % | D <sup>+</sup> BF / % |  |
| <i>K</i> <sup>-</sup> | $54.7 \pm 2.8$ | $25.7 \pm 1.4$        | 56.1         | 30.5                  |  |
| $K^0  /  ar{K}^0$     | $47 \pm 4$     | $61 \pm 5$            | 40.0         | 57.5                  |  |
| <i>K</i> <sup>+</sup> | $3.4 \pm 0.4$  | $5.9 \pm 0.8$         | 3.7          | 7.0                   |  |
| <i>K</i> *,-          | $15 \pm 9$     | 6 ± 5                 | 12.7         | 4.6                   |  |
| $ar{K}^{*,0}$         | $9 \pm 4$      | $23 \pm 5$            | 0.1          | 10.3                  |  |
| <i>K</i> *,0          | $2.8 \pm 1.3$  | < 6.6                 | 9.1          | 19.5                  |  |

We derived an **iterative**, data-driven reweighting of the inclusive components  $D \rightarrow \ell, K^{\pm}, K_S^0, K_L^0, K^{*\pm}, K^{*0} + X$  to

find sweet spot suggested by data:

 $D^0 \to K_L^0: 20.6 \to 28.8 \%$  (39% increase)  $D^+ \to K_L^0: 30.1 \to 40.8 \%$  (36% increase)

(obviously unreliable, but it's a fact that data can best be described by our MC if this is done)





### **MODE DEPENDENCY OF MISMODELING**



### **MODE DEPENDENCY OF MISMODELING**



## SIDEBANDS WITH 36-39% $D \rightarrow K_L^0$ UPSCALING



## **SUMMARY AND CONCLUSION**

- Data of inclusive  $X_c \ell \nu$  modeling is **best described** when **increasing relative**  $D \rightarrow K_L^0$ events of our generic MC(14) to **136-139%**! If the  $K\nu\nu$  excess is completely explained by a similar increasement, this is in agreement with the  $X_c \ell \nu$  mismodeling.
- These numbers won't be the final truth. It's probably overshooting to account for additional *D*-meson decay kinematic mismodeling (40% modeled only with phase space)
- Mismodeling is strongly mode-dependent. It washes out when hadronic *B* decays &  $B \rightarrow X_c X_c$  dominate and it's mainly related to the *X* system (not the  $B \rightarrow \ell$  part).
- Fake cluster assumption insufficient. Their adjustment does not change N<sub>track</sub> and unclear why it would not show up for fakes or secondaries (it can additionally be true, but it's effect is probably comparably small)
- Data compared to our MC has more high  $M_{\text{miss}}^2$ , low  $M_X$  and low multiplicity (including  $N_{\pi} \& N_K$ , not only  $N_{\gamma}$ ) events! This looks just like  $D \to K_L^0 + X$  (or  $B \to K\nu\nu/[\tau \to \ell\nu\nu]\nu$ )
  - > Be aware if  $X_c \ell v$  dominates backgrounds and you are looking for such signatures





# BACKUP

### MC14 VS MC15: D DECAY MODELING

#### Final charm meson is $D^0$ for

- **77%** of my reconstructed  $B \rightarrow X_c \ell \nu$  (majority)
  - 93% of FEI tagged  $B_{\text{FEI}}^+ \rightarrow X_c \ell \nu$
  - **52**% of FEI tagged  $B_{\text{FEI}}^0 \rightarrow X_c \ell \nu$

#### Final charm meson is $D^+$ for

- **23**% of my reconstructed  $B \rightarrow X_c \ell \nu$  (minority)
  - 7% of FEI tagged  $B_{\text{FEI}}^+ \rightarrow X_c \ell \nu$
  - 48% of FEI tagged  $B_{\text{FEI}}^0 \rightarrow X_c \ell \nu$

Any altered decay that contains either a  $K_L^0$  or something that can decay into it ( $K^*$ ,  $K_1$  ...):

| Total D <sup>0</sup>                                                                                                                                    |                                                                                                    | /*/V · )                                                                                                                | 7% (direct                                                | $V^{0}$ , 120/)                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|
| ### MC15 D0:<br># changed BR<br>0.010100000<br># changed BR<br>0.006000000<br>0.008560000<br>0.008560000<br>0.008655500<br># changed B*+<br>0.000113000 | 0.0056 t<br>K_L0 e<br>0.0353 t<br>K_L0 p<br>K_L0 p<br>K_L0 p<br>K_L0 p<br><i>BR (0.0</i><br>K*+R p | to:<br>ta pi0<br>to these on<br>pi+ pi- p<br>pi0 pi0 p<br>pi+ pi- p<br>pi+ pi- p<br>pi+ pi- p<br>pi+ pi- p<br>pi+ pi- p | <i>es (several ne</i><br>i0<br>i0<br>i0 pi0<br>i0 pi0 pi0 | PHSP;<br>ew modes):<br>PHSP;<br>PHSP;<br>PHSP;<br>PHSP;<br>PHSP; |
| ### MC14 D0:<br>0.005600000<br>0.035300000<br>0.000237000                                                                                               | K_L0 e<br>K_L0 p<br>K*+ pi                                                                         | ta pi0<br>pi+ pi- p:<br>                                                                                                | i0                                                        | PHSP;<br>PHSP;<br>SVS;                                           |

Total  $D_{MC14}^0 \rightarrow K_L^0/K^*/K_1$  ...: 37% (direct  $\rightarrow K_L^0$ : 13%) All changes combined increase  $D^0 \rightarrow K_L^0/K^*$  ... BR by 0.08% (negligible!)

| ### MC14 D+:<br>0.003851000<br>0.003040000<br>0.000770000    | anti—K0 omega pi+<br>K_L0 K+<br>K+ anti—K0 pi0           | PHSP;<br>PHSP;<br>PHSP; |
|--------------------------------------------------------------|----------------------------------------------------------|-------------------------|
| <pre>### MC15 D+: # replaced ant 0.001925500 # added.;</pre> | <i>i−K0 by 50−50% K_S0 &amp; K_L0:</i><br>K_L0 omega pi+ | PHSP;                   |
| # added ! :<br>0.013100000                                   | K_L0 eta pi+                                             | PHSP;                   |
| # changed BR 0<br>0.003120000<br># changed BP c              | 1.00304 to:<br>K_LO K+                                   | PHSP;                   |
| <b>0.005240000</b>                                           | K_L0 K+ pi0                                              | PHSP;                   |

Total  $D^+_{MC14} \rightarrow K^0_L/K^*/K_1$  ...: 56% (direct  $\rightarrow K^0_L$ : 24%) All changes combined increase  $D^+ \rightarrow K^0_L/K^*$  ... BR by 1.77% (no game changer) 14 (Semi)leptonic modes are biased as any time the lepton is picked, the final event is not classified as  $X_c \ell v$  any more. Hadronic modes are unbiased and were tested independently.

### DATA SUGGESTED D DECAY COMPOSITIONS

- These distributions are NOT more realistic
- BUT they are the ones needed if one wanted to have a good shape description of X<sub>c</sub>ℓv without reweighting any kinematic distributions
- They result in an upscaling of  $D \rightarrow K_L^0$  of 39/36%
- The procedure is not **sensitive to** all effects, it just upscales stuff with missing energy  $(K_L^0, \nu)$ . This is why  $K^-$  or  $K_S^0$  become so unrealistic

|     | Decay mode                                                  | e D <sup>0</sup> generic<br>MC | D <sup>0</sup> data suggested | D <sup>+</sup> generic<br>MC | D <sup>+</sup> data<br>suggested |
|-----|-------------------------------------------------------------|--------------------------------|-------------------------------|------------------------------|----------------------------------|
|     | e + X                                                       | 4.9%                           | 6.9%                          | 9.7%                         | 11.4%                            |
|     | $\mu + X$                                                   | 3.6%                           | 5.3%                          | 8.3%                         | 10.0%                            |
|     | $K^- + X$                                                   | 56.4%                          | 47.9%                         | 30.8%                        | 18.4%                            |
|     | $K^+ + X$                                                   | 3.6%                           | 3.4%                          | 6.9%                         | 6.0%                             |
|     | $K^0 + X$                                                   | 39.7%                          | 48.5%                         | 57.3%                        | 69.5%                            |
|     | $K_S^0 + \lambda$                                           | <b>X</b> 19.6%                 | 20.3%                         | 29.0%                        | 31.5%                            |
|     | $K_L^0 + 2$                                                 | X 20.6%                        | 28.8%                         | 30.1%                        | 40.8%                            |
|     | $K^{*\pm} + X$                                              | 12.6%                          | 19.5%                         | 4.6%                         | 6.3%                             |
|     | $K^{*0} + X$                                                | 9.2%                           | 6.7%                          | 19.5%                        | 12.7%                            |
|     | PC                                                          | G:                             |                               | $D^0$                        | $D^{+/-}$                        |
| Noi | e+ anythi                                                   | nything                        |                               | [4] $(6.49 \pm 0.11)\%$      | $(16.07\pm 0.30)\%$              |
| ic  | μ <sup>+</sup> α                                            | nything                        |                               | $(6.8\pm0.6)\%$              | $(17.6 \pm 3.2)\%$               |
|     | <i>K</i> <sup>-</sup> o                                     | nything                        |                               | $(54.7\pm2.8)\%$             | $(25.7 \pm 1.4)\%$               |
|     | $1/2 \operatorname{K}_{L}^{0} \bigsqcup \overline{K}^{0}$ a | nything $+ K^0$ anything       |                               | $(47\pm4)\%$                 | $(61\pm5)\%$                     |
|     | <i>K</i> <sup>+</sup> o                                     | nything                        |                               | $(3.4\pm0.4)\%$              | $(5.9\pm0.8)\%$                  |





## SIDEBANDS WITH 36-39% $D \rightarrow K_L^0$ UPSCALING





## TARGETING $R(X_{\tau/\ell})$

• More details in the **BELLE2-NOTE**, sections 5.6, A.3 and A.4





Must be caused by something that is **present in all**  $X_c \ell \nu$ , **but not equally in secondaries & fakes:** Single hadronic *D* decays! **TARGETING**  $R(X_{\tau/\ell})$ Controversial non-resonant  $B \rightarrow D^{(*)} \eta \ell \nu \& B \rightarrow D^{**} \ell \nu$  are









Henrik Junkerkalefeld / Missing  $D \to K_L^0$  in  $B \to X \ell \nu$  events



May 30, 2023

Henrik Junkerkalefeld / Missing  $D \rightarrow K_L^0$  in  $B \rightarrow X \ell \nu$  events **All multiplicities improve!** 23 / 12

(Semi)leptonic modes are biased as any time the lepton is picked, the final event is not classified as  $X_c \ell v$  any more. Hadronic modes are unbiased and were tested independently.

### REWEIGHTED D DECAY COMPOSITIONS

- These distributions do reweight kinematic distributions (40% of D decays are just phase space modeled)
- Thus, they are less severe than the data suggested results (cf. other slide)
- But they cannot directly be derived by simply up- and downscaling certain existing events

| e<br>ss<br>/. | Decay mode                                               | D <sup>0</sup> generic<br>MC | $D^0 M_X$ reshaped | D <sup>+</sup> generic<br>MC | $D^+ M_X$ reshaped   |
|---------------|----------------------------------------------------------|------------------------------|--------------------|------------------------------|----------------------|
| 1             | e + X                                                    | 4.9%                         | 5.2%               | 9.7%                         | 10.3%                |
|               | $\mu + X$                                                | 3.6%                         | 3.8%               | 8.3%                         | 8.9%                 |
| ł             | $K^- + X$                                                | 56.4%                        | 55.1%              | 30.8%                        | 29.2%                |
|               | $K^+ + X$                                                | 3.6%                         | 3.6%               | 6.9%                         | 6.6%                 |
|               | $K^0 + X$                                                | 39.7%                        | 41.1%              | 57.3%                        | 59.4%                |
|               | $K_S^0 + X$                                              | 19.6%                        | 19.5%              | 29.0%                        | 28.9%                |
|               | $K_L^0 + X$                                              | 20.6%                        | 22.1%              | 30.1%                        | 32.5%                |
|               | $K^{*\pm} + X$                                           | 12.6%                        | 13.0%              | 4.6%                         | 4.5%                 |
|               | $K^{*0} + X$                                             | 9.2%                         | 9.0%               | 19.5%                        | 19.4%                |
|               | PDG                                                      | :                            |                    | $D^0$                        | $D^{+/-}$            |
| Nei           | e+ anythi                                                | ng                           |                    | [4] $(6.49 \pm 0.11)\%$      | $(16.07 \pm 0.30)\%$ |
| 1101          | $\mu^+$ anyth                                            | ing                          |                    | $(6.8\pm0.6)\%$              | $(17.6 \pm 3.2)\%$   |
|               | $K^-$ anyth                                              | ing                          |                    | $(54.7\pm2.8)\%$             | $(25.7 \pm 1.4)\%$   |
| -             | $1/2 \text{ K}_{\text{L}}^{0}$ $\overline{K}^{0}$ anythi | ing $+ K^0$ anything         |                    | $(47\pm4)\%$                 | $(61\pm5)\%$         |
|               | $K^+$ anyth                                              | ing                          |                    | $(3.4\pm0.4)\%$              | $(5.9\pm0.8)\%$      |

## **D DECAY MODELING**

#### Why not just fix the modeling instead?

- The M<sub>X</sub> shape is sensitive to the types of modeling that are not well known (inclusive K<sup>0</sup><sub>L</sub> BF, D<sup>\*\*</sup> and nonres. BF, modeling of high multiplicity D decays)
- Branching fractions are a big piece of the puzzle (particularly  $D \rightarrow K_{\rm L}^0 X$ ), but cannot solve it entirely
- The **phase-space modeling** used in  $\approx 40\%$  of the *D* decays is significant/unfixable
- The PDG inclusive and exclusive BFs cannot be reconciled

## Fixing this at generator level is not feasible; instead, use $M_X$ to reweight our MC in a material way!

Success can be evaluated in non-trivial improvements in several quantities  $(M_{\text{miss}}^2, q^2, N_{K^{\pm}}, N_{\pi^{\pm}}, N_{\gamma})$  at the same time while keeping other unchanged  $(p_{\ell}^B)$ .

#### $N_K$ uncertainty of 5-10% natural

 $K_S^0 \to \pi^{0,\pm} \pi^{0,\mp}$  extends this to an  $N_{\pi}$  and  $N_{\gamma}$  uncertainty



## **M**<sub>X</sub> RECONSTRUCTION

#### Ideally reconstructed $M_X$ , if we made **no** reconstruction errors in the X system except

Dennis Benterbusch, Masterthesis, Uni Bonn (2020)



#### **Real** $M_X$ distribution (in MC)