Corrections in B⁺ -> K⁺ vv (ITA)

- charm scaling
- K_I efficiency

F. DATTOLA, Y .FAN, E. GANIEV, S. GLAZOV, Y. HAN (DESY)

C. PRAZ (KEK)

S. STEFKOVA (KIT)

Introduction

- > Search for $B^+ \rightarrow K^+ vv$ with inclusive tagging method
- Corrections introduced in the analysis:
 - 1) K_{1}^{0} efficiency correction
 - 2) Energy scaling of neutrals not matched to photons
 - 3) PID weight
 - 4) Scaling of B-> $X_c(-> K_L^0 + X)$ + anything

This talk will be about: 1) K_{L}^{0} efficiency correction, 2) Energy scaling of neutrals not matched to photons and 4) Scaling of B-> $X_{c}(-> K_{L}^{0} + X)$ + anything

(also showed on previous talk at EWP meeting: Filippo@EWP)

Overview of selections and background suppression

Basic event selections:

- Good tracks: |dr| < 0.5 cm, |dz| < 3 cm, pT > 0.1 GeV/c, E < 5.5 GeV
- Signal K^+ : good track, nPXDHits > 0, $\theta \in CDC$, nCDCHits > 20, kaonID > 0.9

Neutrals in the rest of the event:

- $K_{\rm S}^0$: 'merged', 0.495 < m(π + π -) < 0.500 GeV/c2, cos θ (p, v) > 0.98, flightTime > 0.007 ns, kFit > 0.001
- γ : 0.1 < E < 5.5 GeV, $\theta \in$ CDC, 0.3 < θ (pmiss) < 2.8, Evisible > 4 GeV

Reconstructed di-neutrino squared mass: $q_{rec}^2 = s/4 + M_K^2 - \sqrt{sE_K^*}$ Single candidate selection: *B* candidate with lowest q_{rec}^2

Background suppression:

BDT1: (fastBDT) 12 event-topology variables
 BDT2: (xgboost) trained with 35 input variables with
 BDT1 > 0.9 to further suppress the background
 -> μ(BDT2): signal efficiency quantile

the analysis is sensitive to mismodeling of K⁺ +missing energy

PID sideband samples

- > PID sidebands allow to evaluate the analysis with orthogonal data samples.
- Sidebands: pionID sideband, muonID sideband, electronID sideband
 - Nominal signal selections except the PID cut for signal Kaon

sample	PID selection	PID weights
pionID sideband	PionID >0.9	pion eff + Fake mu->pi
electronID sideband	electronID_noSVD_noTOP>0.9	electron eff + Fake pi->e
muonID sideband	muonID_noSVD > 0.9	muon eff + Fake pi-> mu

Where we start

- → q^2 distribution for different PID sideband in signal search region (μ (BDT2) > 0.92)
 - large discrepancy between data and MC without any corrections for $q^2 > 4 \text{ GeV}^2/c^4$
- → Tried to apply the corrections to address:
 - 1) Detection mismodeling
 - 2) Physics mismodeling at charm threshold

Correct for detection mismodeling

- 1) Energy scaling of neutral clusters unmatched to photons (<u>Eldar@unmatchedNeutral</u>)
 - Shift of energy distribution in simulation wrt data
 - Mostly coming from unmatched-to-photons clusters
 - The shift is reduced by scaling unmatched photon energy **down by 10%** in simulation
- 2) K⁰ efficiency correction (<u>Eldar@KLefficiency</u>)
 - K⁰ contributes to background significantly
 - introduce a data-driven correction of the K⁰₁ efficiency (**global 17% degradation**)

Energy scaling of unmatched photon clusters (nominal sample)

In nominal sample:

- Scale down the energy of unmatched photons by 10% (by default)
- keep 10% systematic uncertainty
- → check the effect of this correction in the region with µ(BDT2)>0.75 using 200 fb⁻¹ MC sample

K^o_L detection efficiency (nominal sample)

- → Correction for mismodelling of K^0_{μ} detection efficiency in MC
 - Study with $e^+e^- \rightarrow \gamma_{ISR}\phi_0 (\rightarrow K_L K_S)$ samples <u>Eldar@KL</u>
 - Module introduced to match KL geometricly to ECL clusters
 - corrections: decrease K⁰_Lefficiency in simulation by 17%
 (8.5% uncertainty)

- → Test to validate the corrections:
 - apply correction only to K⁰_L with E > 1.6 GeV and drop clusters within 15cm of the inferred K⁰_L direction for K⁰_L with E < 1.6GeV
- → Ratio compared with the nominal MC samples (200 fb⁻¹ in µ(BDT2)>0.92 region):
 - Flat correction observed
 - Coverd by the unmatched neutral energy scaling effect

N gamma distribution and ECL out-of-time clusters

Visible impact on nGamma distribution. Increase at low values is likely due to \rightarrow inefficiency

← Large increase in out-of-time clusters in ECL for late experiments due to higher background

Combined with the clustering bug, this leads to a run-dependent inefficiency for photons in ECL, see <u>talk</u> <u>from Chris</u>

Effect of corrections on N gamma distribution (nominal sample)

 \rightarrow Discrepancy in N gamma distribution can be caused by detector modeling issues More details in <u>@Eldar's talk</u> and <u>@Filippo's talk</u>

With all the detection corrections

- → Improved agreement between data and simulation in PionID sideband:
 - unmatched-neutral energy scaling
 - continuum normalization factor (extracted from PID sideband offres samples)
 - K⁰_L efficiency correction

unmatched-neutral energy scaled

Scaling of B -> $X_c(-> K_L^0 + X)$ + anything in pionID sideband

- \rightarrow Goal: correction for mismodelling of charm decays with K_{1}^{0} in the final states
- → Binned fit of q_{rec}^2 with sghf in signal seach region ($\mu(BDT2) > 0.92$) to determine the scaling of charm decay involving a K_1^0 in BB events:
 - select events with **truth-matched** $X_c(-> K_1^0 + X)$ in the signal side
 - fit with 3 components: $B \rightarrow X_c (-> K^0_L + X)$, BB background (exclude 1st component), continuum background
 - normalisation uncertainties set to: 10000%, 1%, 10%
- → Result of the fit: scale up X_c (-> K^0_L + X) by a factor of 1.30 (+-0.02)

Scaling of B -> X_c (-> K_L^0 + X) + anything in muonID sideband

→ Same fit in the MuonID sideband
 ♦ result of the fit suggesting to scale up the X_c(-> K⁰₁ + X) by a factor of 1.35 +- 0.01

• improved data-simulation agreement in q^2 and $\mu(BDT2)$

Scaling of B -> X_c (-> K_L^0 + X) + anything in electronID sideband

→ Same fit in the electronID sideband

result of the fit suggesting to scale up the $X_c(->K_L^0+X)$ by a factor of 1.38 +- 0.01

• improved data-simulation agreement in q^2 and $\mu(BDT2)$

Scaling of $X_c \rightarrow K^0_L X$

 \rightarrow The scaling factor:

sample	scaling factors
pionID sideband	1.30 +- 0.02
electronID sideband	1.38 +- 0.01
muonID sideband	1.35 +- 0.01

- → PionID sideband is the most-relevant sideband due to the larger misIdentificication rate
- → Correction for the nominal sample 1.30 +- 0.10 (New systematic uncertainty corresponding to 33% of the

corrections to cover the variation)

Summary

New corrections introduced: \rightarrow

- Energy scaling of neutrals not matched to photons
- ♦ K⁰_L efficiency correction
 ♦ Scaling of B-> X_c(-> K⁰_L + X) + anything
- \rightarrow Better data-simulation agreement was achieved
- The new corrections were included in the systematic uncertainties \rightarrow

Systematic uncertainty

Source	Correction	Uncertainty type	Uncertainty size	Impact on μ
Normalization of continuum and $B\bar{B}$ background		Global, 7 NP	50%	0.74
Leading B -decays branching fractions		Shape, 5 NP	O(1%)	0.25
Branching fraction for $B \to D^{(**)}$	_	Shape, 1 NP	50%	0.30
Branching fraction for $B^+ \to n\bar{n}K^+$	q^2 dependent $O(100\%)$	Global, 1 NP	100%	0.25
Branching fraction for $D \to K_L X$		Shape, 1 NP	10%	0.06
Continuum background modeling, BDT_c		Shape, 1 NP	O(5%)	0.04
Integrated luminosity	_	Global, 1 NP	1%	0.00
Number of $B\bar{B}$		Global, 1 NP	1.5%	0.02
Off-resonance sample normalization		Global, 1 NP	5%	0.00
Track finding efficiency	2 <u></u>	Shape, 1 NP	0.9%	0.09
Signal kaon PID	p, θ dependent $O(10 - 100\%)$	Shape, 7 NP	O(1%)	0.06
Photon energy scale	—	Shape, 1 NP	0.5%	0.02
Hadronic energy scale		Shape, 1 NP	10%	0.49
$K_{\rm L}^0$ efficiency in ECL	-17%	Shape, 1 NP	8%	0.21
Signal SM form factors	q^2 dependent $O(1\%)$	Shape, 3 NP	O(1%)	0.02
Global signal efficiency	— , , ,	Global, 1 NP	3%	0.03
Signal efficiency shape		Shape, 1 NP	O(1%)	0.07

*signal region bin-dependent uncertainties were introduced for the corrections

- One of the variables that we use to discriminate signal from the background is $\Delta E_{
 m ROE}$
- We have observed shift in data distribution wrt simulation in three iterations of analysis

https://indico.belle2.org/event/9214/contributions/60443/attachments/22019/32557/b2knunu%40PhysPerf 250423 v2.pdf

KL efficiency

Propagate to nominal sideband

- → check the data-mc agreement in nominal sideband region (0.75 < µ(BDT2)< 0.9):</p>
 - With and without scaling of $X_c \rightarrow K_L X$
- The remained data-simulation normalization difference without and with the re-scaling of charm to K_L is 3% (0.7%)

*Continuum background is scaled up by 26% which is determined by the off-res data and bb in 0.75 < µ(BDT2)
0.9 region

contribution of fakes

Fig. 95: Contribution of fakes in $\mu(BDT2) > 0.92$ (left) and $\mu(BDT2) > 0.98$ region (right)