E_ECL studies for $B^+ \rightarrow K^+ \nu \bar{\nu}$ against hadronic tag

Claudia Cecchi, Elisa Manoni, Stefano Moneta, <u>Roberta Volpe</u> (INFN & Uni Perugia) Jacopo Cerasoli, Giulio Dujany, Lucas Martel, Isabelle Ripp-Baudot (IPHC, CNRS)

Joint (S)L / EWP mini-workshop, 05/30/2023

<u>Outline</u>

- Analysis overview and E_ECL usage
- E_ECL studies :
 - definition of the masks
 - first study on the ECL bug
 - photon energy scale corrections
 - thoughts about a correction on the number of extra photons
- Summary and outlook

Analysis overview

Highlights of event reconstruction:

- Reconstruct B_{tag}+K⁺ candidate (KID>0.9)
- Request <u>zero extra</u> (<u>cleaned tracks</u>, <u>π</u>⁰, Ks, Λ) in the event
- Train BDT with 14 input variables
- Cut on BDT output, select best candidate according to best Btag (highest FEI signal probability)
- Extract signal strength from fit to BDT output
- Validate analysis in several control regions:
 - \circ $\,$ wrong Btag-K charge correlation $\,$
 - "wrong" KID and piID, lepID sideband
 - J/Psi embedded sample

Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ with hadronic FEI tag (BELLE2-NOTE-PH-2022-045)

Total extra energy in ECL after preselection Most discriminant variable in final BDT

Analysis overview

Definition of sidebands

 B^+

Missii

momentum

Missing

 B^{-}

 $B^{-}(B^{+})$

hadFEI

hadFEI

hadFEI

Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ with hadronic FEI tag (<u>BELLE2-NOTE-PH-2022-045</u>)

Signal selection

Pion sideband

pionID > 0.5 and kaonID > 0.1 (wrong) Kid sideband

hadFEI B - B Missing momentum

 B^-B^+

Btag and kaon track have same sign

kaonID > 0.9

pionID > 0.9

Wrong charge sideband

 $B \rightarrow K \nu \bar{\nu}$ HTA, Joint (S)L / EWP mini-workshop, 05/30/2023

Extra energy components

• Charged component: ECL energy associated to extra - remaining tracks, not removed N_cleaned_tracks==0 (track-cleaning: dr < 2 cm, |dz| < 4 cm, in CDC accept., nCDCHits>20)

- Neutral component: ECL energy associated to extra photons
- Nominal extra-photon mask:
 - clusterE > (80, 30, 60) MeV in (FWD, BRL, BWD) ECL
 - beamBackgroundSuppression>0.5
 - hadronicSplitOffSuppression>0.3

 $B \rightarrow K \nu \bar{\nu}$ HTA, Joint (S)L / EWP mini-workshop, 05/30/2023

Definition of v133 (nominal mask)

Extra photon mask choice

Several extra photon masks tested in the past:

- using different energy threshold
- use timing/minC2T distance to suppress machine bg/hadronic split-off instead of MVA
- Choice of nominal definition based on data/MC agreement in sidebands: good overall data/MC agreement in 3 out of 4 control samples, both before and after BDT cut

E_{ECL} distribution in signal region after unblinding

 $\mathrm{E}_{\mathrm{ECL}}$ distribution in signal region after final fit

- discrepancy between fitted signal+background and data around 150MeV
- correlation with other variables checked
 → no hint of mis-modeling due to
 specific regions/topology

This (mainly) triggered the need for further studies on E_ECL

Low energy problem

Disagreement below 60 MeV:

• due to a cut on the ratio timing/timing_error, applied at reconstruction level, for clusters with E<50 MeV

→ Investigate alternative gammaROE masks with **higher energy threshold** and removal of beamBackgroundSuppression and hadronicSplitOffSuppression BDTs

Example of tested masks

	Selection	Comments	
v133	E>(80, 30 , 60) MeV, BDTs	Nominal mask	
vENE_MC2TD	E>60 MeV, θ _{clu} in CDC accept., minC2Tdist>50 cm	Removing BDTs and increasing energy threshold	
Belle II simulation Belle II $\int \mathcal{L} dt = 362 \text{fb}^{-1}$			
Pion 0.05 sideband 0.05 after 0.04 preselection 0.03 and: 0.02 \bullet E>60 MeV 0.02 θ in CDC 0.01 accept. 0.00	$\begin{array}{c} + & B\overline{B}, \operatorname{not} \gamma \\ + & c\overline{c}, \operatorname{not} \gamma \\ + & q\overline{q}, \operatorname{not} \gamma \\ \hline & H \\ & H$	$\begin{array}{c} 6 \\ 4 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	

 $B \rightarrow K \nu \bar{\nu}$ HTA, Joint (S)L / EWP mini-workshop, 05/30/2023

Other variables checked

- Checked also number of ELC hits associated to cluster, recommended in some photon list → poor data/MC agreement
- Timing infos not usable for the same reason

Pion sideband before any photon selection mask

First studies on ECL bug in high energy conditions (I)

- Effective clustering inefficiency for high-energy photons in case of high background conditions (<u>Chris' slides</u>)
- Recommended to study nECLOutOfTimeCrystals event-level analysis variable for selected events,
- problem visible for nECLOutOfTimeCrystals>400
 - plots below for pion sideband
 - fraction of events with nECLOutOfTimeCrystals>400: ~ 1% (similarly in signal region)

- Higher numbers of out-of-time crystals in exp 12,18,26
- mainly in Barrel and BwdEC

First studies on ECL bug in high energy conditions (II)

Compare nominal ROE mask (V133) with vENE_MC2TD

 $B \rightarrow K \nu \bar{\nu}$ HTA, Joint (S)L / EWP mini-workshop, 05/30/2023

First studies on ECL bug in high energy conditions (III)

Compare nominal ROE mask (V133) with vENE_MC2TD

- v133: photon requirements tighter than in vENE_MC2TD (mainly due to BDTs in v133)
- **vENE_MC2TD** probably "apparently" less affected by ECL bug (the events affected by the bug are less signal like because of the presence of other clusters)

Plot of E_ECL before the corrections with different masks

Several masks have similar poor agreement in data/MC comparison at low energy

Try to correct the photon energy, both for real and fake/bkg photons

Photon energy scale correction(I)

- No impact from official **photon energy bias correction derived from neutral group**, **affecting mainly real photons** (because derived from a sample dominated by real photons)
- Attempt to derive energy corrections for clusters not associated to photons
 - Compare ROE gamma energy distribution for data and MC
 - Apply an overall energy scale
 - Perform Kolmogorov-Smirnov test for different correction to chose the one which maximize the agreement

$$\begin{split} E_{\text{ROE}}^n(f_h) &= \sum_i E_i^\gamma + f_h \sum_j E_j^n \\ \bullet i \in \text{ECL clusters matched to photons.} \\ \bullet j \in \text{ECL clusters not matched to photons.} \\ \bullet f_h \equiv \text{scale factor quantifying accuracy of energy calibration.} \end{split}$$

Same exercise performed for several sidebands and several masks

Photon energy scale correction(II)

Results for <u>Other masks</u>

pi-sideband:

fraction of unmatched ROEgamma ~ 15% best correction: +17%

Propagating to E_ECL

The disagreement is still present, also considering different ROEgamma masks and different sideband

- Overall energy scale not sufficient to fix data/MC disagreement
- This correction should be energy dependent and at least in 3 theta regions

Extra photon multiplicity correction

- In addition to correct the photon energy, we can correct also the photon efficiency, e.g. from extra photon cluster multiplicity
- Need to choose sideband region in which ROE cluster multiplicity better resemble the signal region one and we have a good data/MC agreement

Wrong charge sideband is a good candidate:

 $B \rightarrow K \nu \bar{\nu}$ HTA, Joint (S)L / EWP mini-workshop, 05/30/2023

Summary and outlook

- After finding some data/MC discrepancies we performed several checks on E_ECL variable
- We tested several masks for the neutral cluster selection
- First study on the effect of the ECL reco bug on the analysis identifies the mask which is "less apparently affected"
- Tried to apply an overall correction to the energy scale of "fake/bkg" photons, but it is not effective (likely there is an important dependence on energy)
- Two possible developments:
 - ▶ Use an energy (and ECL region) dependent correction
 - Add a correction on the number of photons

Extra slides

• We have discovered a feature of the ECL reconstruction code that can cause high-energy photons to be not reconstructed in high background events.

The source of the problem

- In fact, not every local maximum forms an ECLShower. If there are >10 in a connected region, we form only one ECLShower.
- This was a design choice. The bug is that we intended to keep the highest energy local maximum, but instead kept the first (i.e. random) one.
- According to full-luminosity simulated backgrounds at the time, we would never get >10 local maxima in a connected region.

Tested masks

	Selection	Comments	
1.	E>(80, 30, 60) MeV, BDTs	Nominal mask	
2.	E>100 MeV, BDTs	Increasing energy threshold	
3.	E>60 MeV, gamma_theta in CDC accept., minC2Tdist>50 cm	Pomoving PDTs and increasing anargy threshold	
4.	E>100 MeV, gamma_theta in CDC accept., minC2Tdist>50 cm	nemoving bo is and increasing energy threshold	

- Checked also number of ELC hits associated to cluster, recommended in some photon list → poor data/MC agreement
- Timing infos not usable for the same reason

"Real" photon energy corrections

- The payload for photon energy bias corrections can be applied only to a list of particles (<u>see here</u>)
- Neutral Extra energy (NEExtra) can be corrected while EExtra cannot
- Decided to get the corrections from **NEExtra_corr NEExtra**

No impact from official photon energy bias correction derived from neutral group

- derived from ee->mumugamma sample, reconstructed clusters are mostly associated to real photons
- <%level change in number of selected events at pre-selection stage, almost no impact on the shape
 considered as a check, no further syst applied

Summary of corrections derived from piID sidebands

	selection	fraction of unmatched photons in piID sideband	correction factor from piID sideband
v133	E>(80, 30, 60) MeV, BDTs	15.9%	+17%
vITA	E>100 MeV, CDC acc	37.4%	+2%
v233	E>100 MeV, BDTs	14.7%	-14%

- > only with v233 we get negative energy corrections
- > no EExtra definition is very well modeled, even after corrections
- ➤ a simple energy scaling does not solve the issue

Neutral component of EECL

Energy associated to extra - remaining tracks, not passing track cleaning requirements (dr < 2 cm, |dz| < 4 cm, in CDC accept., nCDCHits>20)

Signal MC studies

- Nominal mask
- Signal MC events passing reconstruction + preselection (zero extra cleaned tracks, π^0 , Ks, Λ in the event)
 - fraction of unmatched photons over total number of extra photons ~30%
- Correction produces some effect the region around E_{ECL} >0
- Need to check data/MC agreement to be conclusive (ntuple production with all necessary info on-going)

Eextra V111

"[[clusterReg == 1 and clusterE>0.080] or [clusterReg == 2 and clusterE>0.030] or [clusterReg == 3 and clusterE>0.060]]"

"abs(formula(clusterTiming / clusterErrorTiming))<2.0 and abs(clusterTiming) < 200"

"minC2TDist>20"

Eextra V233

"clusterE>0.1"

"abs(formula(clusterTiming / clusterErrorTiming))<2.0 and abs(clusterTiming) < 200"

"minC2TDist>20"

V133 vs V233 in low Eextra region

Run dependent MC studies

MC15rd does not explain trivially the difference (mainly the peak in the 3rd bin)

Sideband comparison vITA_MC2TD

Belle II simulation

0.02

0.01

0.00

0.0

0.5

1.0

1.5

 E_{ECL} vITA MC2TD g [GeV]

Belle II simulation

 $B\overline{B}$ kid $c\overline{c}$ kid

2.0

2.5

3.0

Elec $B\overline{B}$ el $c\overline{c}$ el $q\overline{q}$ el $B\overline{B}$ 0.5 1.0 1.5 2.0 2.5 3.0 *E_{ECL}* vITA_MC2TD g [GeV]

Belle II simulation

Sideband comparison vITA_MC2TD

Pion sideband

Pion sideband

E<250 MeV

E>250 MeV

MC signal region, no mask

MC signal region, no mask

Belle II simulation

0 50

- $B\overline{B}$, not γ

- $q\overline{q}$, not γ

 $q\overline{q}, \gamma$

250 300

 $B\overline{B}, \gamma$

 $c\overline{c}, \gamma$

150 200

minC2TDist

100

 $c\overline{c}$, not γ

