Study of extra ECL energy in $B^+ \rightarrow \bar{D}^0 l^+ \bar{\nu}_l$ decays

- Mirco Dorigo, <u>Debjit Ghosh</u>, Niharika Rout, Diego Tonelli (University and INFN Trieste)
 - Karim Trabelsi, Vidya Sagar Vobbilisetti (IJCLab)

(S)L/ EWP mini-workshop May 30, 2023

E_{ECL} importance in $B^+ \to K^+ \tau^+ \tau^-$

- Extra ECL energy (E_{ECI}) is the residual energy left in calorimeter after reconstructing hadronic tagged B meson (B_{tag}) and signal B meson (B_{sig})
- E_{ECL} is the signal extraction variable: spot the signal as a peak at zero in E_{ECL}
- Control sample, $B^+ \to \overline{D}{}^0 l^+ \overline{\nu}_l (\overline{D}{}^0 \to K^+ \pi^-)$, is used to check data/MC comparison as it has three tracks in the final states (similar to signal)

Samples and selections

- Data: Proc 13 + Moriond 23 prompt $(\mathscr{L} = 362 f b^{-1})$
- Simulation: MC15 run dependent ($4 \times \mathscr{L}$)
- Release: light-2212-foldex

Reconstruct hadronic B_{tag} using FEI:

- Weight files-'FEIv4 2022 MC15 light-2205-abys'
- $M_{bc} > 5.27 \,\text{GeV/c}^2; |\Delta E| < 0.1 \,\text{GeV}$
- FEI signal probability > 0.001
- Best probable B_{tag} candidates is accepted

Continuum suppression

- event sphericity > 0.2
- $cos(Trust(B_{tag}), Trust(ROE)) < 0.9$

photon energy bias correction is applied on data

Rest of B_{tag} selection:

- only 3 tracks should remain to reconstruct B_{sig} .
- dr < 0.5 cm; |dz| < 2 cm; thetaInCDCAcceptance
- Cluster energy > 55 MeV (to avoid the interplay of the variable $\left| \frac{\text{cluster timing}}{\text{cluster error timing}} \right|$ selection: see backup)

Reconstruct $B_{\text{sig}} \to \bar{D}^0 l^+ \bar{\nu}_l; \ \bar{D}^0 \to K^+ \pi^-$:

- Kaon binary PID, $\mathscr{L}(K/\pi) > 0.6$
- Electron PID, $\mathcal{L}(e) > 0.9$
- Muon PID, $\mathscr{L}(\mu) > 0.9$
- Pion binary PID, $\mathscr{L}(\pi/K) > 0.6$
- $1.84 < m(K^+\pi^-) < 1.89 \,\text{Gev}/c^2$

- Shows large data/MC discrepancy
- Needs to investigate gamma level properties which contribute to this distribution.
- E_{ECL} is the sum of all photons energy per event: depends on photon energy, $E(\gamma)$, and photon multiplicity, $N(\gamma)$

Photon energy $E(\gamma)$ and multiplicity $N(\gamma)$

- These may originate from certain types of photon: real photons, fake photons or beam-backgrounds photons
- Study each photon type separately to get better understanding of these discrepancies

• E_{FCL} discrepancy comes from both $E(\gamma)$ and $N(\gamma)$ data/MC discrepancies

Isolating pure samples

Selections:

Fake photon dominated

• $E > 55 \,\mathrm{MeV}$

minimum cluster to track distance <20 cm

Unable to find a real photon enriched sample. Need to study in other channel containing π^0 : $B^+ \to \bar{D}^{*0}(\bar{D}^0\pi^0)\pi^-, B^+ \to J/\psi K^{*+}(K^+\pi^0)$

MC and data are normalised to same luminosity in these plots

Beam-background dominated

• $E > 55 \,\mathrm{MeV}$

- minimum cluster to track distance >80 cm
- Backward region of ECL

- Both fake and beam-background photons have E_{ECL} data/MC disagreement
- Check how $E(\gamma)$ and $N(\gamma)$ contribute to E_{ECL} mismodeling

Photon energy $E(\gamma)$ Fake photon

Photon energy in ROE [GeV]

0.6

0.5

0.02

0.01

0

1.5

0.5

<u>Data</u> MC

0.1

0.2

0.3

*•••*_•***<mark>*_{**}*</mark>*

0.5

Candidates per 0.04

800

700

600

500

300

Only fake photons has $E(\gamma)$ data/MC disagreement

8

2

2.5

ClusterTheta

1.5

100

50

0

1.5

0.5

<u>Data</u> MC

0.5

Only beam-background photons has $N(\gamma)$ data/MC disagreement

Fix $E(\gamma)$ mismodeling: strategy

- $E(\gamma)$ discrepancy comes from fake photon: fixing fake photon energy should fix overall $E(\gamma)$ data/MC disagreement
- Method to find $E(\gamma)$ correction factor: perform χ^2 minization by optimizing the correction factors which modify fake photon energy in MC to get the best $E(\gamma)$ data/MC agreement
- Correction factor may vary with different photon energies: divide $E(\gamma)$ in bins and find corrections for each bin simultaneously
- Easy to calculate E_{FCL} from the corrected photon energy

Fake photon $E(\gamma)$ correction

- Tried to find 10 correction factors for 10 different bins of $E(\gamma)$
- Fit doesn't converge yet. However, parameters optimize towards the right direction: shows better data/MC agreement of $E(\gamma)$ in fake photon

work in progress

• Data/MC agreement of $E(\gamma)$ of all photons improve after applying fake photon energy correction

without correction

work in progress

with correction

• Data/MC agreement of E_{ECL} slightly improves after applying $E(\gamma)$ correction in the integrated MC sample

• Need to correct beam-background photon multiplicity to fix E_{ECL} mismodeling completely

work in progress

Next steps

- Fix the χ^2 minimization fitter and validate the correction factors in other control channels: $B^+ \to \bar{D}^0 \pi^+, B^+ \to J/\psi K^+$.
- Perform a similar study to get correction factor of $N(\gamma)$ from beam-background sample.
- Find a real photon sample in $B^+ \to \overline{D}^{*0}(\overline{D}^0\pi^0)\pi^-$ or $B^+ \rightarrow J/\psi K^{*+}(K^+\pi^0)$ channel and study $E(\gamma)$ and $N(\gamma)$ data/MC comparison
- Check other γ properties such as cluster timing, clusterNhits etc

Summary

- E_{FCL} is important for most of the missing energy analyses.
- Studied data/MC comparison of photon energy and multiplicity to understand better E_{FCL} discrepancy using $B^+ \rightarrow \bar{D}^0 l^+ \bar{\nu}_l$ channel.
- The fake-photon shows data/MC discrepancy in photon energy and beam-background photons shows discrepancy in photon multiplicity.
- Correction of fake photon energy slightly improves E_{ECL} data/MC agreement.
- Correction of beam-background photon multiplicity is required to fix E_{ECL} mismodeling completely.

Reason of $E(\gamma) > 55$ MeV selection

without any selection

Low energy photon (E(γ) < 50 MeV) has cluster time ratio selections: cluster timing < 1 cluster error timing

Definition of photon types

• Following definitions are taken from this post: <u>https://questions.belle2.org/question/11685/</u> how-can-i-identify-merged-pi0s-and-beam-background-clusters-in-mc/

- Beam background: $\frac{\text{clusterTotalMCMatchWeight}}{0} = 0$

clusterE

• Fake photon: mcPDG \neq 22 and <u>clusterTotalMCMatchWeight</u> > 0 clusterE

clusterE

Polar angle and minC2TDist

Normalized to same luminosity

 $E(\gamma)$ vs $N(\gamma)$

*E*_{ECL}: γ selections

selection: *E*(fwd, brl, bkwd) > (80,55,60)MeV

Eccl: y selections

selection: *E*(fwd, brl, bkwd) > (80,55,60)MeV

*E*_{ECL}: γ selections

common selection: E(fwd, brl, bkwd) > (80,55,60) MeV

$N(\gamma)$ vs D^0 FEI mode

$N(\gamma)$ vs D^* FEI mode

$N(\gamma)$ vs D^- FEI mode

Data/MC comparison of other γ variables

- γ variables like minC2TDist and cluster time are important to suppress beam background and fake photons
- Only minC2TDist has good data/MC agreement

 $E(\gamma)$ has good agreement; $N(\gamma)$ has disagreement in lower bins

28

