E_ECL check with had.FEI + D*lnu 2023/5/31 T.Koga

Motivation

- -data/MC difference of E_ECL using D*Inu, hadronic FEI
- -share information
- -near future plan

Setup

-Dataset: MC14, 189fb-1

-q2<4GeV², |Mmiss2|<1GeV² required for pure D*lnu sample

data/MC difference of E_ECL

-data/MC of E_ECL was bad with run independent MC

-p-value < 0.01 for B+ mode Data MC total -data excess at low energy bin D*Iv DI v -large run dependence: early runs have large deviation D**1v Hadronic B $B^0 \leftrightarrow B^{\pm}$ crossfeed Continuum $B \rightarrow D^* \ln u, D^* \rightarrow \pi 0D$ $B+\rightarrow D^* \ln u, D^*->\gamma D$ B0→D*lnu, D*->π0D $B0 \rightarrow D^* \ln u, D^* \rightarrow \pi D$ p-value=0.05,0.01: MC14 ri proc12, bucket1x χ2/10=18.3,23.2 /10 200 Candidates Candidates Candidate Ldt=100 fb⁻¹ Candidates Ldt=100 fb⁻¹ Ldt=100 fb 30 Ldt=100 fb stat.only 140 stat.only stat.only 250 stat.only 180 $D^{*+} \rightarrow D^+ \pi^0$ $D^{*0} \rightarrow D^0 \pi^0$ $D^{*+} \rightarrow D^0 \pi^+$ 160 25 $\chi^2/n=9.4/10$ χ²/n=8.9/10 χ²/n=18.9/10 200 χ²/n=24.9/10 140 20 bin0:1.7σ 120 bin0:2.0σ bin0:0.6σ bin0:2.4σ 80 100 15 bin1:-0.1σ bin1:-0.5σ bin1:1.4σ bin1:2.0σ 80 100 60 10 40 5 20 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 ROE Eextra (GeV) ROE E_{extra} (GeV) ROE E_{extra} (GeV) ROE E_{extra} (GeV)

-MCrd B+: data/MC at low E_ECL gets better than MCri -MCrd B0: no change or bit worse than MCri

Data MC total

D*Iv DIv D**Iv

Hadronic B

run dependence later exp

-no significant difference between MCrd and MCri -run dependence is improved largely with MCrd

Data MC total D*I v

DI v D**I v

Further E_ECL study with gamma ROE

- -Data/MC has still 1.5-1.9σ local tensions at low E_ECL, even with MCrd -for all D* mode. possible systematics.
- -Further study is done with gamma list in ROE -new ntuple is produced with MC14ri at q2 sideband -MC is area normalized
- -At minC2TDist>20cm, data/MC has tension near gamma energy threshold for ROE. fake gamma have peak.

stat.only

150

χ²/n=11.1/10 bin0:1.9σ

bin1:-0.2σ

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 ROE *E*_{extra} (GeV)

ROE gamma (BO \rightarrow D*Inu, D*-> π +D)

-gamma with minC2TDist>20cm

-minC2TDist and angle looks reasonable, deviation around energy threshold

ROE gamma (BO \rightarrow D*Inu, D*-> π 0D)

-gamma with minC2TDist>20cm

-minC2TDist and angle looks reasonable, deviation around energy threshold

E_ECL correction for R(D*)

-Based on the studies, following corrections are added to MCri

- -1. beamBG energy PDF is corrected by run dependent MC
- -2. energy of hadronic splitoff gamma is scaled by -15MeV (~10%).
- -In addition, systematics is assigned by varying the scaling with \pm 7MeV. -error is determined by Δ chi2

stat. only	Wich	fake gamma 10MeV	fake gamma 20MeV
χ2/NDF, NDF=10	1.16,0.8, 2.7, 1.7 (64/40)	0.63, 0.95, 1.52, 0.98 (49/40)	0.63, 0.84, 1.37, 0.92 (39/40)
bin0 significance	1.6σ,1.0σ,2.8σ, 1.8σ	0.12σ,1.4σ,0.5σ, -0.6σ	-0.7σ,0.7σ,-0.1σ, -1.4σ
bin1 significance	0.2σ,1.3σ,1.0σ, 2.0σ	-0.6σ,0.9σ,1.1σ, 1.7σ	-0.7σ,1.3σ,1.0σ, 1.5σ

q² sideband: effect from others

<u>slide</u>

-Following hypothesis are considered to describe data/MC difference of E_{extra} -Effect from radiative photon, true $\pi 0/\gamma$, Btag can not explain difference

possible hypothesis	investigation	result	
$\pi 0$ from D decay	D decay mode dependence	no dependence	
radiative photon	$D^*\mu v$ and D^*ev dependence	no dependence	
hadronic sprit off	minC2TDist dependence	no dependence	
beamBG	run dependence	-large data/MC at early run -better data/MC agreement with beamBGx1/10	
Bsig isSignal==1 fraction (π0,γ from D* decay)	Constraint from ΔM sideband	no difference w and w/o constraint	
Btag decaymode	Btag decay mode dependence	no dependence	
Btag isSignal==1 fraction	-check E _{extra} with isSignal==1,!=1 -check deltaE and Mbc of Btag	 -E_{extra} is different, if fraction of isSignal==1 is very higher than MC, explain data/MC -fraction is bit lower than MC. not realistic. 	
	$B + \rightarrow D^* lnu, D^* - > \gamma D$	<pre></pre>	

deltaE(GeV)

Mbc(GeV

12

ROE E_{extra}(GeV)

Task: ECL clustering and calibration

- -Improve ECL clustering/matching algorithm
- -better variables than minC2TDist
- -develop core clustering algorithm
- -Improve data/MC agreement
 - -Calibration of low energy y
- -Tuning of GEANT4 simulation

Motivation

-data/MC difference of E_ECL using D*Inu, hadronic FEI

-share observation

- -run dependent MC is useful to improve data/MC of beam BG
- -fake photon energy is reduced to improve data/MC
- -Effect from radiative photon, true $\pi 0/\gamma$, Btag can not explain difference

-near future plan

- -fundamental improvement of ECL clustering, or new track-cluster related variable is needed
- -add control sample, learn/check consistency from your study

backup

Further E_ECL study with gamma ROE

- -Data/MC has still 1.5-1.9σ local tensions at low E_ECL, even with MCrd -for all D* mode. possible systematics MC14 rd
- -Further study is done with gamma list in ROE -new ntuple is produced with MC14ri at q2 sideband -MC is area normalized
- -At minC2TDist<20cm, data/MC agrees well.

→major hadronic split off component is reasonably modeled. 10~20MeV energy shift is seen at ~250MeV.

stat.only

χ²/n=11.1/10 bin0:1.9σ

bin1:-0.2σ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 ROE *E*_{extra} (GeV)

200

150

E_ECL correction at Mmiss2 sideband

-Fake photon 90%, 80%, beamBG corrected by MCri

E_ECL correction for R(D*)

-Based on the studies, following corrections are added to MCri

-1. beamBG energy PDF is corrected by run dependent MC

- -2. energy of fake (MC match failure) gamma is scaled by -10%(\doteqdot 5MeV).
- -In addition, systematics is estimated by varying the scaling with $\pm 10\%$. -value will be checked again by using low Miss2 sideband

shape only stat. only	MCri	MCri, beambg corrected fake gamma 90%	MCri, beambg corrected fake gamma 80%
χ2/NDF, NDF=10	1.16,0.8, 2.7, 1.7 (64/40)	0.76, 1.3, 1.82, 0.98 (49/40)	0.79, 1.0, 1.55, 0.6 (39/40)
bin0 significance	1.6σ,1.0σ,2.8σ, 1.8σ	1.0σ,1.2σ,0.9σ, 0.2σ	-0.1σ,0.8σ,0.2σ, -0.9σ
bin1 significance	0.2σ,1.3σ,1.0σ, 2.0σ	-0.7σ,1.5σ,1.4σ, 1.7σ	-1.0σ,1.4σ,1.0σ, 1.1σ

Scaling factor of E_ECL (1st-10th bin)

-estimated at q2 sideband (will be updated to Mmiss2 sideband)

-10% scaling

-dmID=100:

1.045, 1.083, 1.056, 0.893, 0.989, 0.923, 0.816, 1.059, 0.684, 0.865

-dmID=200:

0.960, 0.934, 0.961, 1.054, 1.105, 1.166, 1.978, 0.628, 1.259, 0.710 -dmID=300:

1.247, 0.963, 1.017, 0.880, 0.983, 0.901, 0.943, 0.993, 0.838, 0.744

-20% scaling

-dmID=100:

1.138, 1.127, 1.066, 0.843, 0.927, 0.842, 0.750, 0.965, 0.574, 0.760 -dmID=200:

1.058, 0.979, 0.938, 1.058, 1.025, 0.836, 1.817, 0.717, 0.960, 0.709 -dmID=300:

1.342, 1.014, 1.022, 0.853, 0.862, 0.886, 0.898, 0.798, 0.720, 0.745

beambackground suppression MVA

-No significant difference

beamBG with run dependent MC

-beamBG simulation is improved by run dependent MC -in early runs: beamBG of MCrd is ~50% smaller than MCri -in latter runs: beamBG of MCrd is ~30% larger than MCri

Further E_ECL study with gamma ROE

- -Data/MC has still 1.5-1.9σ local tensions at low E_ECL, even with MCrd -for all D* mode. possible large systematics MC14 rd
- -Further study is done with gamma list in ROE -new ntuple is produced with MC14ri at q2 sideband -MC is area normalized
- -At minC2TDist<20cm, data/MC agrees well.

→major hadronic split off component is reasonably modeled. 10~20MeV energy shift is seen at ~250MeV.

stat.only

χ²/n=11.1/10 bin0:1.9σ

bin1:-0.2σ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 ROE *E*_{extra} (GeV)

200

150

E_ECL correction

-Based on the studies, following corrections are added to MCri

- -1. beamBG energy PDF is corrected by run dependent MC
- -2. energy of hadronic splitoff gamma is scaled by -10MeV (~10%).

-In addition, systematics is assigned by varying the scaling with ± 10 MeV. -value will be checked again by using low Miss2 sideband

χ2/NDF, NDF=10	1.16,0.8, 2.7, 1.7 (64/40)	0.63, 0.95, 1.52, 0.98 (49/40)	0.63, 0.84, 1.37, 0.92 (39/40)
bin0 significance	1.6σ,1.0σ,2.8σ, 1.8σ	0.12σ,1.4σ,0.5σ, -0.6σ	-0.7σ,0.7σ,-0.1σ, -1.4σ
bin1 significance	0.2σ,1.3σ,1.0σ, 2.0σ	-0.6σ,0.9σ,1.1σ, 1.7σ	-0.7σ,1.3σ,1.0σ, 1.5σ

Check of ROE gamma

-gamma in ROE is stored in ntuple -run independent MC, data added

-basic distribution is checked in q2 sideband with category of MC match -true MC particle:

MCmatch=true

-hadronic split off: MCmatch=false, gamma_clusterTotalMCMatchWeight/gamma_clusterE>0.4

-beamBG:

MCmatch=false, gamma_clusterTotalMCMatchWeight/gamma_clusterE<0.4

q² sideband: effect from others

-Following hypothesis are considered to describe data/MC difference of E_{extra} -Except for beamBG, there is no reasonable explanation <u>slide</u>

possible hypothesis	investigation	result
$\pi 0$ from D decay	D decay mode dependence	no dependence
radiative photon	$D^*\mu v$ and D^*ev dependence	no dependence
hadronic sprit off	minC2TDist dependence	no dependence
beamBG	run dependence	-large data/MC at early run -better data/MC agreement with beamBGx1/10
Bsig isSignal==1 fraction (π0,γ from D* decay)	Constraint from ΔM sideband	no difference w and w/o constraint
Btag decaymode	Btag decay mode dependence	no dependence
Btag isSignal==1 fraction	-check E _{extra} with isSignal==1,!=1 -check deltaE and Mbc of Btag	 -E_{extra} is different, if fraction of isSignal==1 is very higher than MC, explain data/MC -fraction is bit lower than MC. not realistic.

E_ECL data/MC: D decay mode

-Even with cleanest mode of D->K π , discrepancy is seen at low energy.

E_ECL data/MC: e and μ mode

-No clear difference between e and $\boldsymbol{\mu}$

E_ECL MC components

-MC categorized by E_ECL of true particles, hadronic split off, beamBG. Clear difference.

E_ECL data/MC: true scaled

-Data/MC get better with $\times 0.5$ but not perfect.

E_ECL data/MC: hadronic splitoff scaled

-Data/MC get better with $\times 0.6$ but not perfect.

E_ECL data/MC: minC2TDist dependency

-tendency is not changed with minC2TDist: hadronic split off is not suspecious

E_ECL data/MC: beamBG scaled

-Data/MC get better with $\times 0.0$

E_ECL data/MC: run dependence

-Data/MC is worse at early experiments and better at latter experiments. Support hypothesis of beamBG mismodeling.

decayModeID

TABLE III: The hadronic *B*-meson decay channels supported by the FEI algorithm, along with their decayModeID flags.

E_ECL data/MC: decayModeID

-No clear difference between Btag decayMode

E_ECL data/MC: decayModeID

-No clear difference between Btag decayMode

E_ECL data/MC: decayModeID

-No clear difference between Btag decayMode

E_ECL data/MC: Btag isSignal

-Data/MC get better with +20% of isSignal==1. (from Mbc and deltaE, unrealistic.)

Bsig_isSignalADFNormB

-all -Bsig isSignalADFNormB==1 -Bsig isSignalADFNormB!=1

-E_ECL is different between Btag_isSignalADFNormB==1, !=1. -data/MC of deltaM looks reasonable.

E_ECL data/MC: Bsig_isSignalADFNormB

-If Bsig_isSignalADFNormB==1 only, data/MC got better. (from deltaM, unrealistic.)

-MC total -MC D*I/τ ν -MC DI/τν -MC D**I/τν -MC hadron -MC wrong sign -MC continuum