E_{ECL} studies in $B \rightarrow \tau\nu$ analysis

Michele AversanoA,
Guglielmo De NardoB, Giovanni GaudinoB,C, Toru IijimaA,D,E, Mario MerolaB

Nagoya UniversityA, INFN Napoli – University of Napoli Federico IIB, INFN Napoli – Scuola Superiore MeridionaleC, Nagoya KMID, KEK IPNSEE

Joint (S)L/EWP mini-workshop
2023/05/30
Search for $B \rightarrow \tau \nu$ decay

Signal is searched through τ decays (1-prong):

- $\tau \rightarrow e\nu_e\nu_\tau$
- $\tau \rightarrow \mu\nu_\mu\nu_\tau$
- $\tau \rightarrow \pi\nu_\tau$
- $\tau \rightarrow \rho\nu_\tau$ with $\rho \rightarrow \pi^\pm\pi^0$

~71% of the τ Branching Fraction

FEI hadronic tagging

No Extra Tracks (from IP)

B^+

B^-

τ^-

ν_τ

ν_τ

$l(\nu_l),\pi,\rho$

$l = e, \mu$

Backgrounds:

MC 15ri

Data

<table>
<thead>
<tr>
<th>Signal</th>
<th>MC 15ri</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0\overline{B^0}$</td>
<td>2.8 ab$^{-1}$</td>
<td>362 fb$^{-1}$+ offres 42 fb$^{-1}$</td>
</tr>
<tr>
<td>B^+B^-</td>
<td>2.6 ab$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>$q\overline{q}$</td>
<td>800 fb$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>$\tau^+\tau^-$</td>
<td>400 fb$^{-1}$</td>
<td></td>
</tr>
</tbody>
</table>

New light-release 2303-iriomote
Data/MC extra energy shift

The energy distribution in the calorimeter exhibits different behavior between the Data and MC.

This variable describes the total energy in the ECL in data and MC after the FEI selection without any clean-up.

Cut on this variable removed in latest Skims.

E_{ECL}^{FEI}

E_{ECL}^{FEI} (only neutrals)
The E_{ECL}^{extra} has not a good agreement between Data and MC.

Electron, cut: sigProb > 0.01 and Mbc > 5.27 GeV

There are several potential causes:

- Residual energy bias between Data and MC.
- Photon reconstruction efficiency differ between Data and MC.
- Low energy photons not well-represented in the different ECL regions.

(ROE mask: E > 55 MeV and clusterNhits > 1.5 and beamBackgroundSuppression > 0.5 and fakePhotonSuppression > 0.1)
Extra Clusters Studies

The E_{ECL}^{extra} has not a good agreement between Data and MC.

There are several potential causes:

- Residual energy bias between Data and MC.
- Photon reconstruction efficiency differ between Data and MC.
- Low energy photons not well-represented in the different ECL regions.
Extra Clusters Studies

The E_{ECL}^{extra} has not a good agreement between Data and MC.

There are several potential causes:

- **Residual energy bias between Data and MC.**
- Photon reconstruction efficiency differs between Data and MC.
- Low energy photons not well-represented in the different ECL regions.

Clusters in data have a residual energy shift equal to 1.52%
Extra Clusters Studies

The E_{ECL}^{extra} has not a good agreement between Data and MC.

There are several potential causes:

- Residual energy bias between Data and MC.
- Photon reconstruction efficiency differ between Data and MC.
- Low energy photons not well-represented in the different ECL regions.
Extra Clusters Studies

The E_{ECL}^{extra} has not a good agreement between Data and MC.

There are several potential causes:

- Residual energy bias between Data and MC.
- Photon reconstruction efficiency differs between Data and MC.
- Low energy photons not well-represented in the different ECL regions.

<table>
<thead>
<tr>
<th>ECL region</th>
<th>Energy threshold (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrel</td>
<td>55</td>
</tr>
<tr>
<td>Backward</td>
<td>55</td>
</tr>
<tr>
<td>Forward</td>
<td>55</td>
</tr>
</tbody>
</table>

Low energy γ show different shape in the 3 regions
Extra Clusters Studies

The E_{ECL}^{extra} has not a good agreement between Data and MC.

Cluster Energy with 25% shift on fake photon as B-Knuunu HadTag

There are several potential causes:

• Residual energy bias between Data and MC.

• Photon reconstruction efficiency differ between Data and MC.

• Low energy photons not well-represented in the different ECL regions.

<table>
<thead>
<tr>
<th>ECL region</th>
<th>Energy threshold (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrel</td>
<td>Old 55</td>
</tr>
<tr>
<td>Backward</td>
<td>55</td>
</tr>
<tr>
<td>Forward</td>
<td>55</td>
</tr>
</tbody>
</table>

Low energy γ show different shape in the 3 regions
The double tag sample is enriched in split-off and beam background extra clusters (more Signal like). Possibility to check data and MC.
Extra Clusters Studies Control Sample : Double Tag

The double tag sample is enriched in split-off and beam background extra clusters (more Signal like). Possibility to check data and MC.
The double tag sample is enriched in split-off and beam background extra clusters (more Signal like). Possibility to check data and MC.

In double tag, we have good agreement even without any correction. E_{ECL}^{extra} shift may be not caused by the fake photons energy not accurately reconstructed in MC.
Extra Clusters Studies

The E_{ECL}^{extra} has not a good agreement between Data and MC.

Electron:

$E_{ECL}^{\text{extra}} > 0.5\text{GeV}$

→ Instead of the cluster energy, we try to correct only the multiplicity.

We do a linear fit for $N_{\gamma}^{\text{extra}} \geq 3$ and correct E_{ECL}^{extra}.
Extra Clusters Studies

The E_{ECL}^{extra} has not a good agreement between Data and MC.

Electron:

$E_{ECL}^{extra} > 0.5\text{GeV}$

→ Instead of the cluster energy, we try to correct only the multiplicity.
Extra Clusters Studies

The E_{ECL}^{extra} agreement between Data and MC improve correcting just for the multiplicity.

Electron:

Bereofe

After

Data-MC / MC

$\chi^2 / \text{NDF} = 16.78 / 14$

$\chi^2 / \text{NDF} = 22.77 / 14$

2023/05/30 Michele Aversano
The E_{ECL}^{extra} agreement between Data and MC improve correcting just for the multiplicity.

$\tau \rightarrow e\nu\nu$

$\tau \rightarrow \mu\nu\nu$

$\tau \rightarrow \pi\nu$

$\tau \rightarrow \rho\nu$
Extra Clusters Studies: M_{bc} sideband

The E_{ECL}^{extra} agreement between Data and MC improve correcting just for the multiplicity also in M_{bc} sideband.

$M_{bc} < 5.27$ GeV

Same correction of the E_{ECL}^{extra} sideband
Summary and Plans

• We are working on MC corrections for E_{ECL}^{extra} pdfs:
 o Double tag checks (signal like - enriched in split-off and beam background)
 o Agreement better even without any correction. Corrections would be much smaller.
 o Correcting the clusters multiplicity → good data-MC agreement.
 o May the discrepancy come from Physics (background composition) ?
 o Did also some checks in M_{bc} sideband with the same correction of the E_{ECL}^{extra} sideband.

Backup
Analysis Workflow

- Reconstruction + PID correction **(DONE)**

<table>
<thead>
<tr>
<th>Particles</th>
<th>Selections</th>
</tr>
</thead>
<tbody>
<tr>
<td>good track</td>
<td>(dr < 0.5 \text{ cm},</td>
</tr>
<tr>
<td>(e^+)</td>
<td>good track, (\mathcal{P}_e > 0.9)</td>
</tr>
<tr>
<td>(\mu^+)</td>
<td>good track, (\mathcal{P}_\mu > 0.9)</td>
</tr>
<tr>
<td>(\pi^+)</td>
<td>good track, (\mathcal{P}_\pi > 0.6)</td>
</tr>
<tr>
<td>(\pi^0)</td>
<td>eff40May2020</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ROE tracks((=0))</th>
<th>(dr < 0.5 \text{ and } abs(dz) < 2) and (\text{thetaInCDCAcceptance})</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROE (\gamma)</td>
<td>(E > 0.055 \text{ GeV} \text{ and } \text{clusterNHits} > 1.5)</td>
</tr>
<tr>
<td>ROE (\gamma)</td>
<td>Hadronic Split off cut</td>
</tr>
<tr>
<td>ROE (\gamma)</td>
<td>Beam Background cut</td>
</tr>
</tbody>
</table>

Possible definitions of \(E_{ECL} \)

- Beam background 1: \(t < 200 \text{ ns and } \sigma_t/t < 2 \)
- Beam background 2: \(\text{beamBackgroundSuppression} > 0.5 \)
- Hadronic Splitoff 1: \(\text{minC2TDist} > 25 \text{ cm} \)
- Hadronic Splitoff 2: \(\text{hadronicSplitOffSuppression} > 0.1 \)

fakePhotonSuppression from light-2303-iriomote