E_{ECL} studies in $B \rightarrow \tau \nu$ analysis

Michele Aversano^A,

Guglielmo De Nardo^B, Giovanni Gaudino^{B,C}, Toru Iijima^{A,D,E}, Mario Merola^B

Nagoya University^A, INFN Napoli – University of Napoli Federico II^B, INFN Napoli – Scuola Superiore Meridionale^C, Nagoya KMI^D, KEK IPNS^E

Joint (S)L/EWP mini-workshop 2023/05/30

Search for B ightarrow au v decay

Data/MC extra energy shift

The energy distribution in the calorimeter exhibits different behavior between the Data and MC.

This variables describes the total energy in the ECL in data and MC after the FEI selection without any clean-up.

Cut on this variable removed in latest Skims .

Data/MC extra energy shift

The E_{ECL}^{extra} has not a good agreement between Data and MC.

Electron, cut: sigProb>0.01 and Mbc >5.27 GeV

There are several potential causes:

- Residual energy bias between Data and MC.
- Photon reconstruction efficiency differ between Data and MC.
- Low energy photons not well-represented in the different ECL regions.

(ROE mask: E > 55 MeV and clustesNHits > 1.5 and beamBackgroundSuppression > 0.5 and fakePhotonSuppression > 0.1)

The E_{ECL}^{extra} has not a good agreement between Data and MC.

- Residual energy bias between Data and MC.
- Photon reconstruction efficiency differ between Data and MC.
- Low energy photons not well-represented in the different ECL regions.

The E_{ECL}^{extra} has not a good agreement between Data and MC.

Extra π^0 mass distribution (GeV)

Clusters in data have a residual energy shift equal to 1.52%

- Residual energy bias between Data and MC.
- Photon reconstruction efficiency differ between Data and MC.
- Low energy photons not well-represented in the different ECL regions.

The E_{ECL}^{extra} has not a good agreement between Data and MC.

- Residual energy bias between Data and MC.
- Photon reconstruction efficiency differ between Data and MC.
- Low energy photons not well-represented in the different ECL regions.

The E_{ECL}^{extra} has not a good agreement between Data and MC.

- Residual energy bias between Data and MC.
- Photon reconstruction efficiency differ between Data and MC.
- Low energy photons not well-represented in the different ECL regions.

	ECL region	Energy threshold (MeV)	
		Old	New
	Barrel	55	55
γ energy γ show different shape in the 3 regions	Backward	55	100
	Forward	55	80

Michele Aversano

The E_{ECL}^{extra} has not a good agreement between Data and MC.

2023/05/30

There are several potential causes:

- Residual energy bias between Data and MC.
- Photon reconstruction efficiency differ between Data and MC.
- Low energy photons not well-represented in the different ECL regions.

	ECL region	Energy threshold (MeV)	
		Old	New
	Barrel	55	55
y γ show different n the 3 regions	Backward	55	100
	Forward	55	80

9/

Extra Clusters Studies Control Sample : Double Tag

The double tag sample is enriched in split-off and beam background extra clusters (more Signal like). Possibility to check data and MC.

Michele Aversano

Extra Clusters Studies Control Sample : Double Tag

The double tag sample is enriched in split-off and beam background extra clusters (more Signal like). Possibility to check data and MC.

2023/05/30

Michele Aversano

Extra Clusters Studies Control Sample : Double Tag

Tag

The double tag sample is enriched in split-off and beam background extra clusters (more Signal like). Possibility to check data and MC.

2023/05/30

Tag

The E_{ECL}^{extra} has not a good agreement between Data and MC.

Electron:

 \rightarrow Instead of the cluster energy, we try to correct only the multiplicity.

The E_{ECL}^{extra} has not a good agreement between Data and MC.

Electron:

 $E_{ECL}^{extra} > 0.5 \text{GeV}$

 \rightarrow Instead of the cluster energy, we try to correct only the multiplicity.

Data/MC = 1.013788 +- 0.008564

The E_{ECL}^{extra} agreement between Data and MC improve correcting just for the multiplicity.

Electron:

The E_{ECL}^{extra} agreement between Data and MC improve correcting just for the multiplicity.

Extra Clusters Studies: M_{bc} sideband

The E_{ECL}^{extra} agreement between Data and MC improve correcting just for the multiplicity also in M_{bc} sideband.

Summary and Plans

- We are working on MC corrections for E_{ECL}^{extra} pdfs:
 - Double tag checks (signal like enriched in split-off and beam background)
 - Agreement better even without any correction. Corrections would be much smaller.
 - \circ Correcting the clusters multiplicity \rightarrow good data-MC agreement.
 - May the discrepancy come from Physics (background composition) ?
 - Did also some checks in M_{bc} sideband with the same correction of the E_{ECL}^{extra} sideband.
- Our Belle II note: <u>BELLE2-NOTE-PH-2022-025</u>.

Backup

Analysis Workflow

• Reconstruction + PID correction (DONE)

Particles	Selections	
good track	$dr < 0.5 \mathrm{cm}, dz < 2 \mathrm{cm}, p > 0.5 \mathrm{GeV}, nCDCHits > 20, E < 5.$	$5\mathrm{GeV}$
e^+	good track, $\mathcal{P}_e > 0.9$	
μ^+	good track, $\mathcal{P}_{\mu} > 0.9$	
π^+	good track, $\mathcal{P}_{\pi} > 0.6$	
π^0	m eff40May2020	
ROE tracks($=0$)	dr < 0.5 and $abs(dz) < 2$ and thetaInCDCAcceptance	
ROE γ	$E>0.055{\rm GeV}$ and $clusterNHits>1.5$	
ROE γ	Hadronic Split off cut	
ROE γ	Beam Background cut	
	Possible definitions of $E_{\rm ECL}$	
Beam background 1	$t < 200 \mathrm{ns}$ and $\sigma_t/t < 2$	
Beam background 2	beamBackgroundSuppression > 0.5	
Hadronic Splitoff 1	$\texttt{minC2TDist} > 25\mathrm{cm}$	
Hadronic Splitoff 2	hadronicSplitOffSuppression > 0.1	from light-2303-iriomote