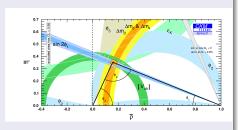
Time-dependent CPV measurements at Belle II

Sagar Hazra (On behalf of the Belle II collaboration)

Tata Institute of Fundamental Research

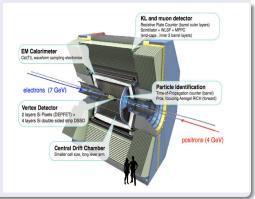
July 3, 2023 @Beauty



1/14

Motivation

- ullet Flavor physics: CKM angle (ϕ_1) measurement to test SM
- Flavor changing neutral current $b \rightarrow s$ penguin transitions
 - \rightarrow Highly sensitive to non-SM particles
 - \rightarrow Probing the effective value of $\sin(2\phi_1)$
- Exp. challenges: low $\mathcal{B}(10^{-5})$, flavor tagging, poor decay time resolution (K_c^0, π^0)


2 / 14

Today's focus

- Lifetime and mixing benchmark in $B \to D^*\pi$
- $\sin(2\phi_1)$ measurement \rightarrow in Cabbibo favoured $(J/\psi K_S^0)$ and suppressed $(K_S^0\pi^0, 3K_S^0, \phi K_S^0)$

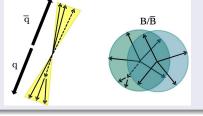
SuperKEKB and Belle II Detector

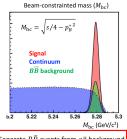
- Asymmetric collider: e^- to 7 ${\rm GeV}$ and e^+ to 4 ${\rm GeV}$
 - → clean experimental environment
- World record peak luminosity: $4.7 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- New tracking system and improved vertexing
- Improved particle identification

3/14

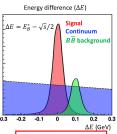
Currently:

• 424 fb⁻¹ data are collected

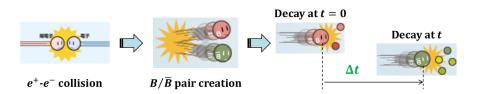

Signal extraction


Suppress $10^5 \times$ larger $q\bar{q}$ (continuum) background

- Combine several topological variables in multivariate techniques
- qq̄ background rejection:


 $\approx 93 - 99\%$, signal retention:

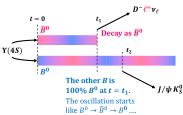
 $\approx 80 - 90\%$



Separate $B\bar{B}$ events from $a\bar{a}$ background

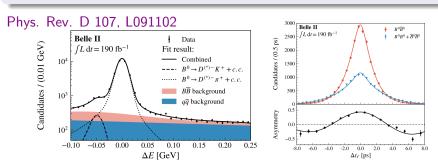
Separate signal events from $B\bar{B}$, $q\bar{q}$ background

Going for time-dependent analysis




- Pixel detector installed to compensate reduced boost
- Belle: $(\beta \gamma = 0.43, \ \Delta z \approx 200 \mu m) \rightarrow$ Belle II: $(\beta \gamma = 0.29, \ \Delta z \approx 130 \mu m)$
- Improved Δt resolution using precise beam-spot profile of nano-beam scheme

Flavor tagging



- $qr \stackrel{\text{distribution}}{\text{distribution}} \bullet \stackrel{q}{q} = +1 \text{ for } B^0 \text{ tag and } q = -1 \text{ for } B^0 \text{ tag}$
 - Wrong tagging probability $w = \frac{1-r}{2}$
 - Tagging efficiency = $(30.0 \pm 1.3)\%$

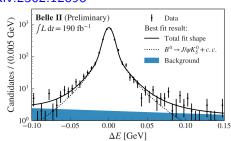
6/14

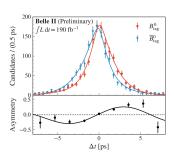
Mixing and lifetime measurement

- 33K $B^0 o D^{*+}h^-$ events used
- Fit ΔE and continuum background discriminator output (C_{out}) to determine signal events
- ullet Background substructed Δt fitted to determine Δm_d and au_{B^0}

 $au_{B^0} = 1.499 \pm 0.013 (stat) \pm 0.008 (syst), \Delta m_d = 0.516 \pm 0.008 (stat) \pm 0.005 (syst)$

Benchmark for time-dependent measurement

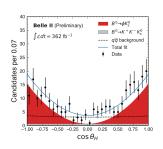

July 3, 2023 @Beauty

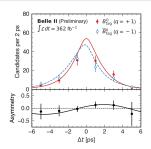

7 / 14

Measurement of $\sin 2\phi_1$

- Utilize validated framework to $J/\psi K_S^0$ sample (3k events)
- Fit ΔE to determine signal events
- ullet Background substracted Δt fitted to measure CP parameters
- \bullet Flavor tagger and some resolution function parameters are taken from $B^0 \to D^{*-} h^+$

arXiv:2302.12898

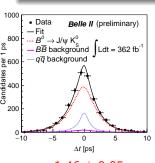


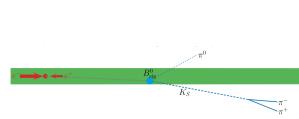

8/14

$$A_{CP} = 0.094 \pm 0.044(stat)^{+0.042}_{-0.017}(syst), S_{CP} = 0.720 \pm 0.062(stat) \pm 0.016(syst)$$

Measurement of ϕK_S^0

- Clean experimental access to probe $\Delta S_{CP} \equiv S_{CP}^{b \to sq\bar{q}} \sin 2\phi_1$, with similar Δt resolution function as $J/\psi K_S^0$
- Fit signal-determination variables Δt , M_{bc} , C_{out} and $\cos \theta_H$
- Non-resonant background coming from $B^0 o K^+K^-K^0_S$ separated using $\cos \theta_H$

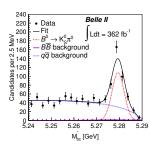


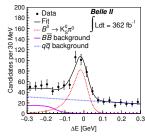

9/14

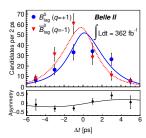
 $A_{CP}=0.31\pm0.20(stat)\pm0.05(syst), S_{CP}=0.54\pm0.26(stat)^{+0.06}_{-0.08}(syst)$ Similar uncertainty on A_{CP} despite using small dataset wrt Belle/BaBar

Measurement of $K_S^0 \pi^0$

- Challenge: No primary charged particles to vertex, poor decay time resolution, need good performance with neutrals
- Fit signal-determination variables ΔE and M_{bc} , decay time, and C_{out} in bins of quality of flavor-identification
- ullet Poor Δt resolution events also used to increase the precision on A_{CP}
- Validate on $B^0 o J/\psi K_S^0$ with K_S^0 only vertex

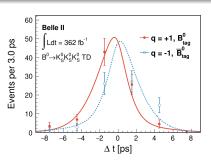


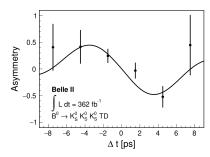

10 / 14


 $au_{B^0} = 1.46 \pm 0.05 \; \mathrm{ps}$

Measurement of $K_S^0\pi^0$

arXiv:2305.07555


Signal yield
$$=$$
415 \pm 25


$$A_{CP} = 0.04 \pm 0.15 (stat) \pm 0.05 (syst), S_{CP} = 0.75^{+0.20}_{-0.23} (stat) \pm 0.04 (syst)$$

- Improved neutrals reconstruction, continuum suppression and event-by-event resolution of proper times
- Achieve precision comparable with world's best result even with smaller sample!

Measurement of $K_S^0 K_S^0 K_S^0$

- Similar challenge like $K_S^0\pi^0$: no primary charge track to vertex and poor decay time resolution
- ullet Events are categorized based on Δt resolution
- ullet Good and poor Δt resolution are fiited simultaneously to determine CP parameter

12 / 14

$$A_{CP} = 0.07^{+0.15}_{-0.20}(stat) \pm 0.02(syst), S_{CP} = -1.37^{+0.35}_{-0.45}(stat) \pm 0.03(syst)$$

Unique channel to Belle II experiment

Coclusion

- Belle II has unique access to channels that offer key tests of the SM
- Precision achieve on $K_S^0\pi^0$ measurement already competitive to world's best measurement
- Belle II is in a unique position to measure $b \to sq\bar{q}$, which are sensitive to prove BSM physics through penguin loops

Thank You

Long-shutdown activity and plans

Belle II stopped taking data in Summer 2022 for a long shutdown

- replacement of beam-pipe
- replacement of photomultipliers of the central PID detector (TOP)
- o installation of 2-layered pixel vertex detector
- o improved data-quality monitoring and alarm system
- o completed transition to new DAQ boards (PCle40)
- accelerator improvements: injection, non-linear collimators, monitoring
- or replacement of aging components
- additional shielding and increased resilience against beam bckg

Currently working on pixel detector installation:

==> shipping to KEK in ~mid March

==> final tests at KEK scheduled in April

On track to resume data taking next winter with new pixel detector