
Quarkonium at Belle II

17th International Workshop on Meson Physics, KRAKÓW, POLAND

Pavel Oskin

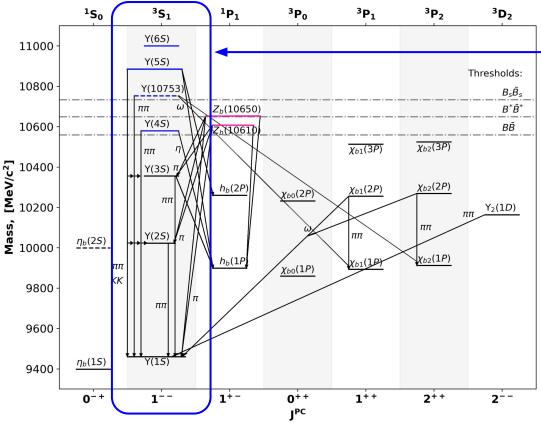
(on behalf of the Belle II Collaboration)

Bottomonium

Heavy quarkonium spectroscopy is an excellent laboratory to study non-perturbative QCD

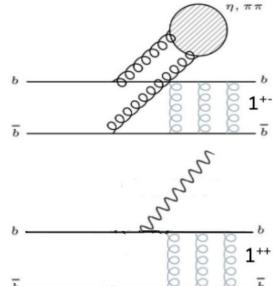
Two type of states:

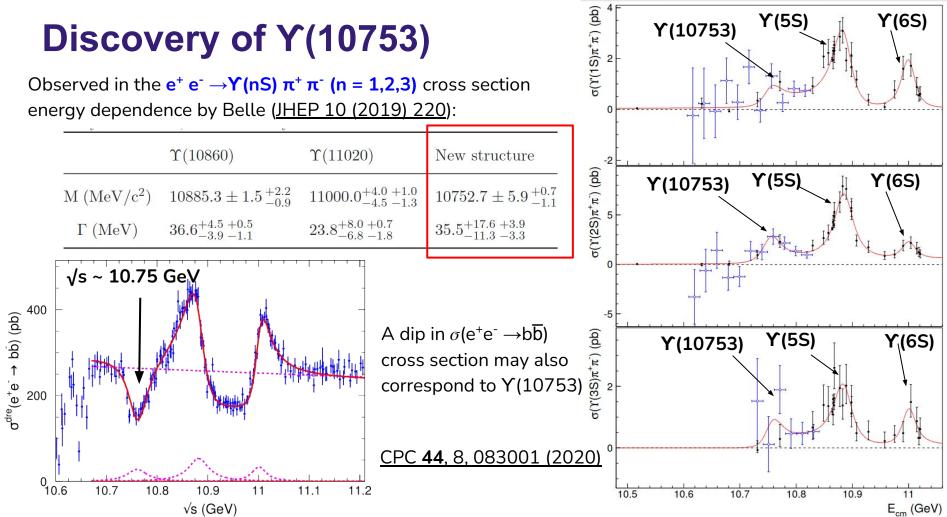
Below **BB** threshold states are well described by the potential models;


Above **BB** threshold states demonstrate unexpected properties:

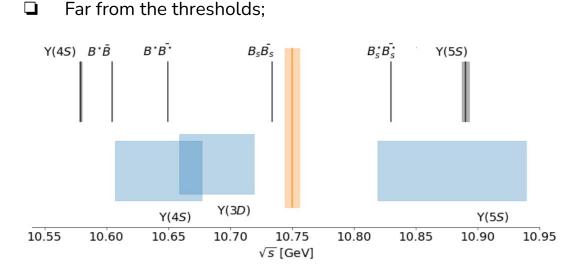
- Hadronic transitions are strongly enhanced:
- η transitions are not suppressed compare to $\pi^+ \pi^-$ transitions (HQSS violation);

Two charged Z_{h}^{+} states are observed;


Conventional bottomonium (pure bb states) Bottomonium-like states (mix of $b\overline{b}$ and $B\overline{B}$) Purely exotic charged states (Z_{h}^{+}) .

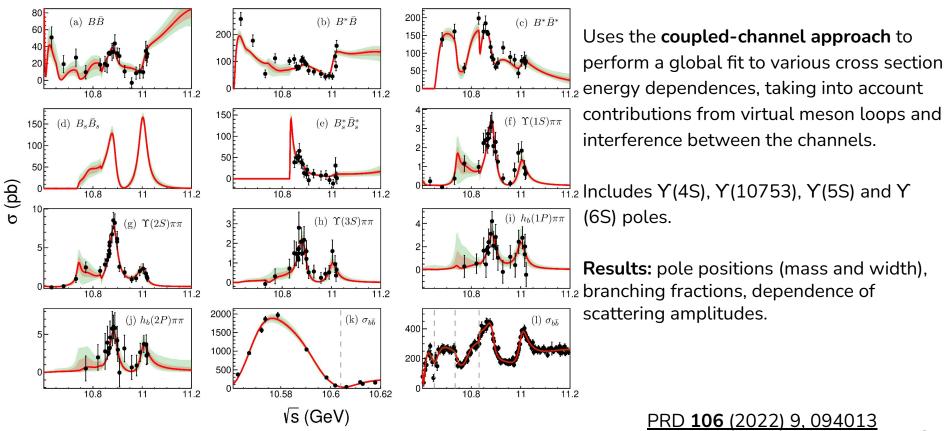

Bottomonium

 $\Upsilon(nS)$ 1⁻⁻ states can be produced in e⁺e⁻ collisions.

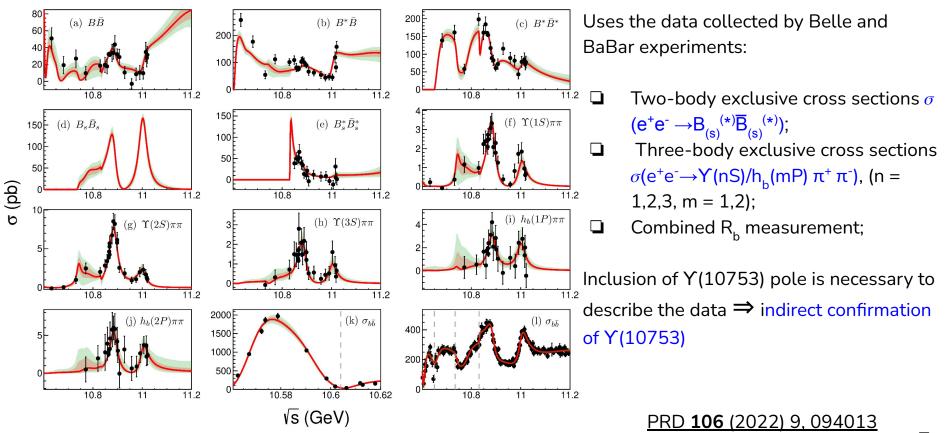

The other quantum numbers can be obtained via hadronic or radiative transitions:

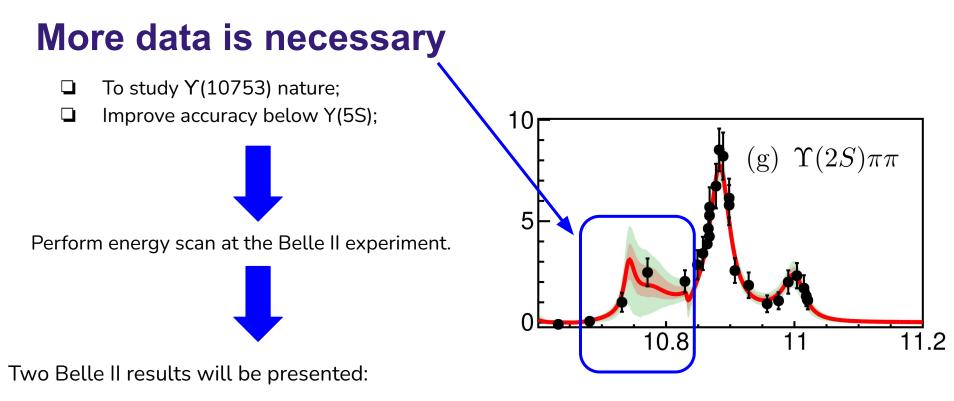
Quarkonium at Belle II / Pavel Oskin / MESON 2023

What is the nature of Y(10753)?

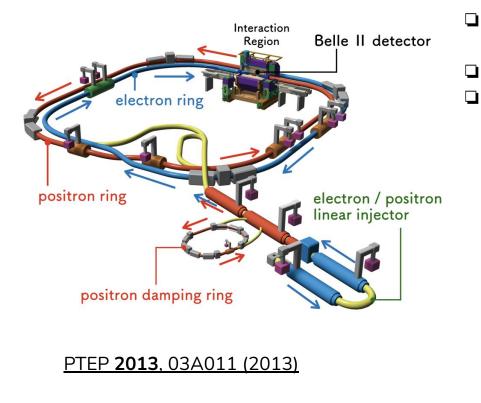


- ❑ Mass does not match Y(3D) theoretical predictions, and D-wave states are not seen in e+ e- collisions;
- □ Y(4S) Y(3D) mixing can be enhanced due to hadron loops:

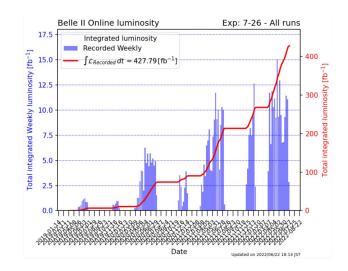

Tetraquark state: <u>CPC **43**</u>, 12, 123102 (2019), <u>PLB</u>, **802**, 135217 (2020), <u>PRD</u>, **104**, 3, 034036 (2021).


- Hadronic molecule with a small admixture of a bottomonium: <u>PRD 103, 074507 (2021)</u>
- Hybrid state: <u>PRD 99, 1, 014017 (2019)</u>
- Conventional bb state: <u>EPJC 80, 1, 59 (2020)</u> <u>PLB 803, 135340 (2020)</u> <u>PRD 102, 1, 014036 (2020)</u> <u>PRD 101, 1, 014020 (2020)</u> <u>PRD 104, 034036 (2021)</u> <u>PRD 105, 074007 (2022)</u> <u>EPJC 137, 357 (2022)</u> <u>PRD 106, 094013 (2022)</u>

Global phenomenological analysis

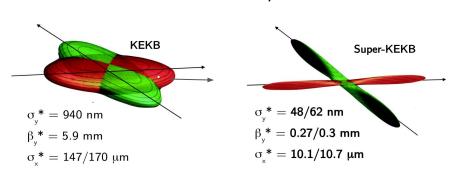


Global phenomenological analysis

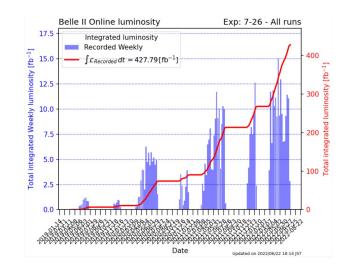


- \Box e⁺e⁻ $\rightarrow \omega \chi_{bJ}(1P)$ and $X_{b} \rightarrow \omega \Upsilon(1S)$
- \Box e⁺e⁻ \rightarrow BB, BB^{*} and B^{*}B^{*}

- Asymmetric e⁺e⁻ collider at KEK (Tsukuba, Japan) provides unique clean environment;
- Instant luminosity record of 4.7 x 10³⁴ cm⁻² s⁻¹ (x2 of the Belle peak luminosity);
 - Data is collected with Belle II detector;
 - E_{c.m.} is measured with high precision and can be tuned from 9 to 11 GeV;

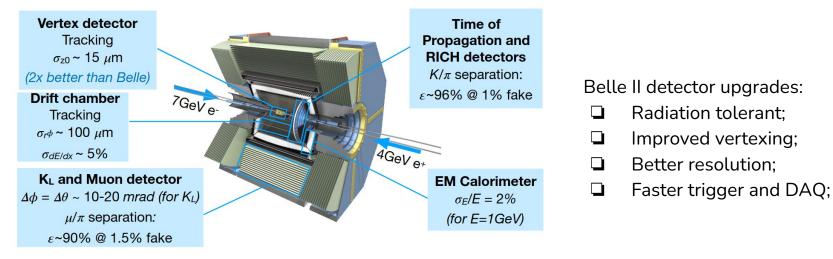


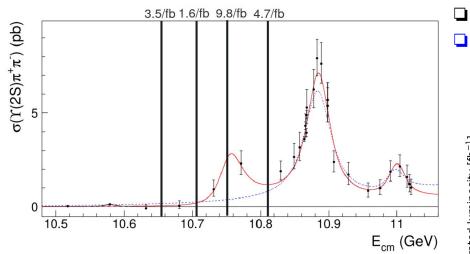
Beam current increased by x2.


$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \left(\underbrace{I_{\pm} \xi_{y\pm}}_{\beta_y^*} \right) \left(\frac{R_L}{R_{\xi_y}} \right)$$

Vertical beta function at IP reduced by 1/20 "Nano-beam" scheme.

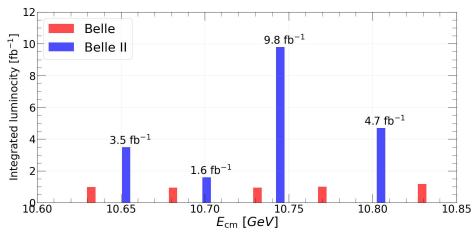
x40 instant luminosity increase


- Asymmetric e⁺e⁻ collider at KEK (Tsukuba, Japan) provides unique clean environment;
- Instant luminosity record of 4.7 x 10³⁴ cm⁻² s⁻¹ (x2 of the Belle peak luminosity);
- Data is collected with Belle II detector;
- E_{c.m.} is measured with high precision and can be tuned from 9 to 11 GeV;


 4π spectrometer with good vertexing, tracking, efficient PID and calorimetry;

PTEP 2020 (2020) 2, 029201

- Asymmetric e⁺e⁻ collider at KEK (Tsukuba, Japan) provides unique clean environment;
- Instant luminosity record of 4.7 x 10³⁴ cm⁻² s⁻¹ (x2 of the Belle peak luminosity);
- Data is collected with Belle II detector;
- E_{c.m.} is measured with high precision and can be tuned from 9 to 11 GeV;

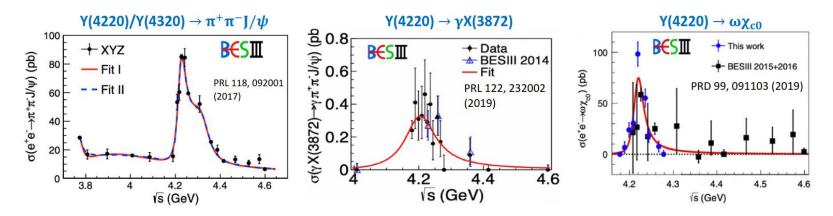


Y (10753) state was observed in the e⁺ e[−] \rightarrow Y (nS) $\pi^+ \pi^-$ (n = 1,2,3) cross section energy dependence by Belle (JHEP 10 (2019) 220).

 □ 19 fb⁻¹ scan around Y(10753) was collected in November 2021.

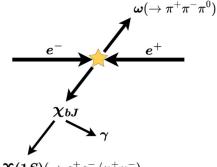
- Asymmetric e⁺e⁻ collider at KEK (Tsukuba, Japan) provides unique clean environment;
- Instant luminosity record of 4.7 x 10³⁴ cm⁻² s⁻¹ (x2 of the Belle peak luminosity);
 - Data is collected with Belle II detector;
 - E_{c.m.} is measured with high precision and can be tuned from 9 to 11 GeV;

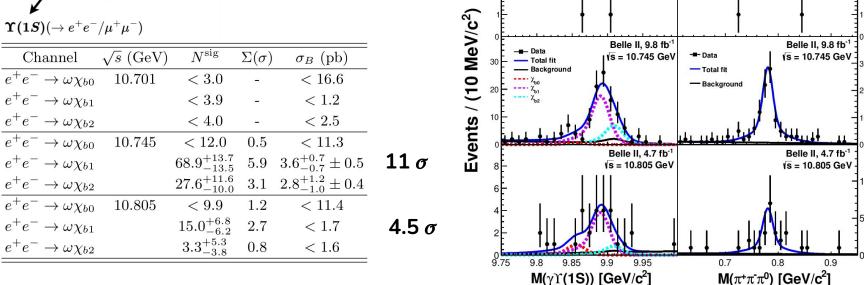
Search for $e^+e^- \rightarrow \omega \chi_{bJ}(1P)$ and $X_b^- \rightarrow \omega \Upsilon(1S)$


Motivation to search for $\Upsilon(10753) \rightarrow \omega \chi_{b,J}(1P)$

Theory:

□ Mixed Υ (4S) - Υ (3D) state: $\omega \chi_{hl}$ could be enhanced (<u>PRD **104**</u>, 034036 (2021)).


Charmonium sector:

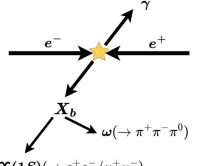

- Similar to Y(10753) structure Y(4220) was observed in $e^+e^- \rightarrow J/\Psi \pi^+\pi^-$ cross section dependence by BES III (PRL **118**, 092001 (2017)).
- □ Y(4220) peak was observed in γ X(3872) and $\omega \chi_{c0}$ final states by BES III (PRL, **122**, 232002 (2019), PRD **99**, 091103(R) (2019)).
- □ We can expect $\Upsilon(10753)$ to decay into $\gamma[X_b \rightarrow \omega \Upsilon(1S)]$ and $\omega \chi_{bJ}$ final states.

Observation of $\Upsilon(10753) \rightarrow \omega \chi_{bJ}(1P)$

PRL 130, 091902 (2023)

2D fit to M(γ Y(1S)) and M($\pi^+\pi^-\pi^0$):

Belle II, 1.6 fb⁻¹


s = 10.701 GeV

Belle II, 1.6 fb⁻¹

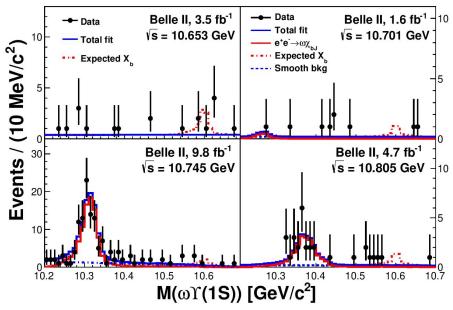
Quarkonium at Belle II / Pavel Oskin / MESON 2023

Search for $\Upsilon(10753) \rightarrow \gamma X_{b}[\rightarrow \omega \Upsilon(1S)]$

D No evidence of X_{b} signal;

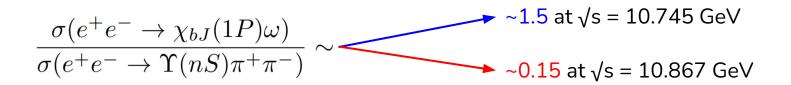
Fit to $M[\omega \Upsilon(1S)]$

• Only $\omega \chi_{bJ}$ (1P) reflections are seen;


PRL 130, 091902 (2023)

 $\Upsilon(1S)(
ightarrow e^+e^-/\mu^+\mu^-)$

□ Upper limits on cross sections are set for $M(X_b) \in [10.45; 10.65]$ GeV;


$$\sigma_{X_b}^{\rm UL} = \sigma_B^{\rm UL}(e^+e^- \to \gamma X_b) \mathcal{B}(X_b \to \omega \Upsilon(1S))$$

$\sqrt{s} \; (\text{GeV})$	M_{X_b} (GeV)	$\sigma_{X_b}^{\mathrm{UL}} \; \mathrm{(pb)}$
10.653	10.59	< 0.55
10.701	10.45	< 0.84
10.745	10.45	< 0.14
10.805	10.53	< 0.47

Discussion

Previously Belle measured σ (e⁺e⁻ $\rightarrow \chi_{bJ}$ (1P) ω) at $\sqrt{s} = 10.867$ GeV (PRL **113** (2014) 14, 142001):

 \Box Order of magnitude difference is observed for this ratio at $\Upsilon(5S)$ and $\Upsilon(10753)$

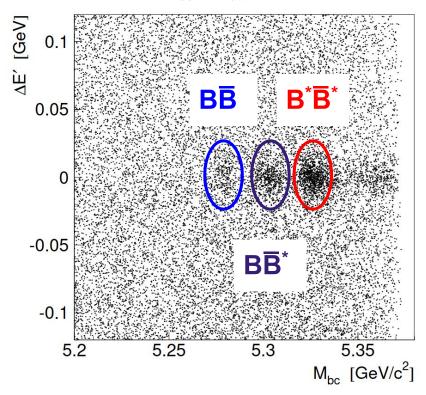
It may indicate different internal structures for these two states.

Energy dependence of the $e^+e^- \rightarrow B^{(*)}\overline{B}^{(*)}$ cross section

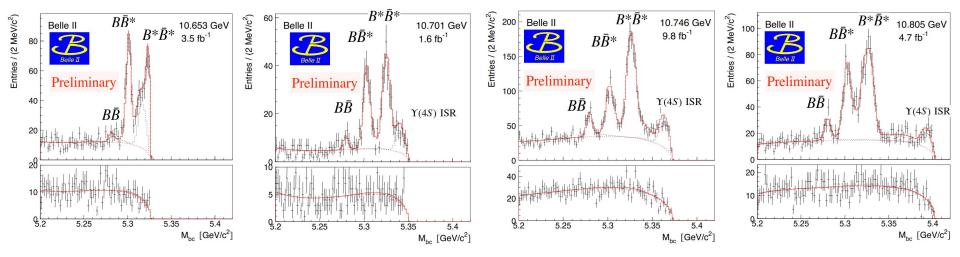
Quarkonium at Belle II / Pavel Oskin / MESON 2023

Energy dependence of the $e^+e^- \rightarrow B^{(*)}\overline{B}^{(*)}$ cross section

Previous Belle analysis: JHEP 06 (2021), 137


- One B meson is fully reconstructed using hadronic channels (FEI, efficiency ~ 0.6%);
- $\Box \quad B^* \rightarrow B\gamma \text{ decays are not reconstructed};$

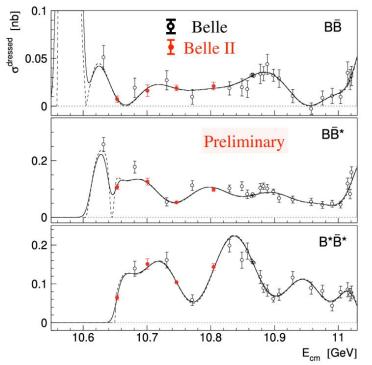
$$\Delta E = E_B - E_{\rm cm}/2$$
$$\Delta E' = \Delta E + M_{\rm bc} - m_B$$


- □ |∆E`| < 18 MeV;
- **G** Signal is identified using M_{bc} :

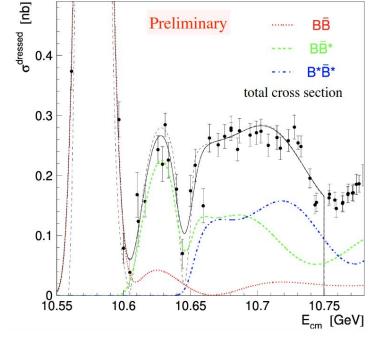
$$M_{\rm bc} = \sqrt{E_{\rm cm}^2/4 - p_B^2}$$

$$\Delta$$
E` vs M_{bc} at E_{cm} = 10.746 GeV

\mathbf{M}_{bc} fit at scan energies

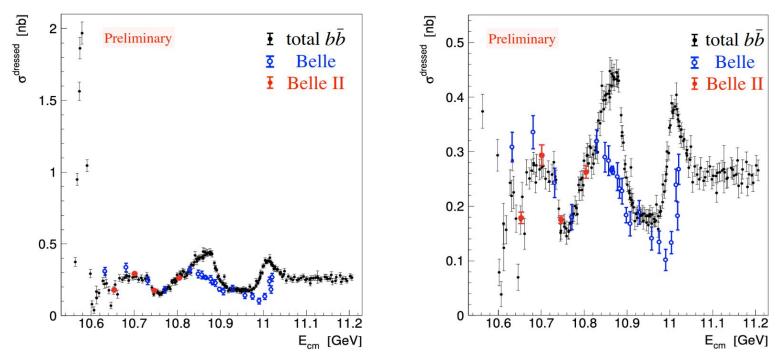


- **Good description of the** M_{bc} in data;
- **Contribution of** Υ (4S) \rightarrow BB production via ISR is visible well described by the fit;
- □ Sharp cut of the data at right edge for E=10.653 GeV \Rightarrow fast rise of B*B* near threshold;


Energy dependence of the cross sections

Simultaneous fit to:

Exclusive cross sections measured by in this work and previous Belle study (JHEP 06 (2021), 137);

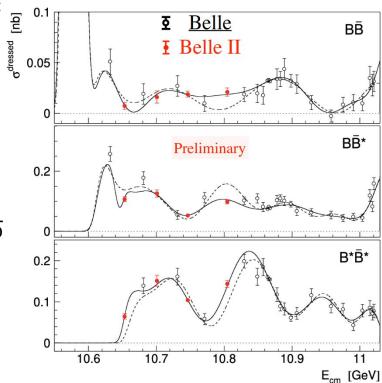

Total cross section (<u>CPC 44, 8,</u> 083001 (2020))

Quarkonium at Belle II / Pavel Oskin / MESON 2023

Comparison of $\sigma_{b\bar{b}}$ and $\sigma_{B\bar{B}} + \sigma_{B\bar{B}^*} + \sigma_{B^*\bar{B}^*}$

- Good agreement at low energies;
- Difference at higher energy is due to $B_s^{(*)}$, multi-body $B^{(*)}\overline{B}^{(*)}\pi(\pi)$ and bottomonia;

Quarkonium at Belle II / Pavel Oskin / MESON 2023


Discussion

New measurement significantly improves previous Belle result:

- □ Solid curve combined Belle + Belle II data fit
- Dashed curve Belle data fit only

 $\sigma(e^+e^- \rightarrow B^*\overline{B}^*)$ rises rapidly above $B^*\overline{B}^*$ threshold:

- □ Similar behaviour was seen for D*D* cross section (PRD **97**, 012002 (2018));
- **Possible interpretation:** resonance or bound state ($b\overline{b}$ or $B^*\overline{B}^*$) near threshold (<u>MPL A 21, 2779 (2006)</u>);
- □ Also explains a narrow dip in $\sigma(e^+e^- \rightarrow B\overline{B}^*)$ near $B^*\overline{B}^*$ threshold by destructive interference between $e^+e^- \rightarrow B\overline{B}^*$ and $e^+e^- \rightarrow B^*\overline{B}^* \rightarrow B\overline{B}^*$
- **Could also enhance and Y** $\pi^+ \pi^-$ and $h_{\mu}\eta$ final states.

Conclusion

Scan above Υ (4S) gives an opportunity for a lot of unique studies:

- Y(10753) decays to different final states. Study of its properties;
- Energy dependence of the various final states production;

Wide range of long-term non- Υ (4S) possibilities:

- \Box Increase the above- Υ (4S) scan statistics;
- \Box Y(6S) region study with high statistics;
- General Study of the threshold regions;

Thank you!

-		
	Golden Modes	
	$e^+e^- \to \pi^+\pi^-\Upsilon(pS)(\to \ell^+\ell^-)$	
	$B\overline{B}$ decomposition	
	$\pi^+\pi^-$ Dalitz	
	$Y_b o \omega \eta_b(1S)$	
	$Y_b \rightarrow \omega \chi_{bJ}(1P)$ PRL 130 , 0919	<u>02 (2023)</u>
	Silver Modes	
	$Y_b \to \pi^+ \pi^- X$ (inclusive)	
	$Y_b \to \eta X$ (inclusive)	
	$Y_b \to \eta \Upsilon(1S, 2S) (\to \ell^+ \ell^-)$	
	$Y_b \to \eta' \Upsilon(1S) (\to \ell^+ \ell^-)$	
	$Y_b \to \Upsilon(1S)$ (inclusive)	
	Bronze Modes	
	$Y_b \to \gamma X_b$	
	$Y_b \to \pi^0 \pi^0 \Upsilon(pS) (\to \ell^+ \ell^-)$	
	$Y_b \to KK(\phi)\Upsilon(pS)(\to \ell^+\ell^-)$	
	$Y_b \to \pi^0 \pi^0 X$ (inclusive)	
	$Y_b \to \pi^0 X$ (incl. or excl.)	