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Motivation i =0 MK
< Simulation
e Belle observed decays of A, E°, £ " and Q_but few have been _
subjected to a full amplitude anaIyS|s -

o Shed light on the existence of hyperon resonances _

o Quark structure of candidate exotic states may be better 3 :
understood through the hadronic decays of charmed baryons ™ ¢ =  °  Sieee
via charm-to-strange quark transitions Potential resonant substructure:

=(1690)" — A°K—
E2(1690) and E(1820) are relatively poorly understood, 3-star states in the PDG E£(1820)" — A°K-
>(1385)" — A7t
K*(892)° — K 7"
e Charmed baryon decays display rich substructure of hyperon
Yom resonances
o Belle studies of =(1620)° and =(1690)° in = = —Em)
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o
o Amplitude analysis of = 0 =0 (K'KKY)
o Here we are studying =° > A°K m*
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Sample and selection criteria

Sample: MC15ri 1/ab
release: light-2212-foldex

Cu

Xic CMS p>2.8
For tracks:
o thetalnCDCAcceptance
o  nCDCHits > 20
o dr<1andabs(dz) <4 (prompt only)
For proton decaying from Lambda:
o protoniD > 0.5
Treefit chiProb > 0.001
Binary K/1r ID > 0.3 (kaons)
Binary /K ID > 0.2 (pions)
Kaon pt> 0.4
Pion pt > 0.1
N flight significance > 10
Trinary (K/1r & p) ID > 0.3 (kaons)

Events / (0.625 MeV/c?)

3000

2500

2000

1500

1000 ;

500

MC15ri 1/ab

=20 5 AOK 7t

SR

signal

[ bkg

9.44

246 247  2.48

mass(AKT)

2.45

2.49

2.50

Signal Region = 2.465 - 2.477 (12 MeV window) (50)

Accepted signal = 26,659
Remaining background in SR = 10,200
S/B in SR =2.61 (Purity = 72.3%)



Amplitude model :7<<
Construct the amplitude as a piece describing the coupling and coupling (k)

propagator and a piece describing the decay:

UMA () = (AK 77 |HIE) = Y Ty, 207 7 (6, 6x)

JIX AX

X Gjx Ax B2 (04, )
Then treat the coupling as a free parameter, so the amplitude becomes

M)\A —’ M,Apx (=
U 37 E : V?X )\XAJX Ax(x)

JX AX

VJ'XJ\X = ij7>\XBWjX7)\X AW Z N]DM ax (Px50x, )NJ'XD%},AA (94, 04,0)

JIX,AX




Angular distribution

A oA 2, - ﬁX(EO)restframe
z o p(E(c])Lab frame t
_\_\
0 x
~ A A N > g,: 2, X il
dx,
X
° o
T = ﬁbeam X Z &' = Ppoam X 2’
Rest frame of =? Rest frame of Resonance X
AMAM(Z) =335 NyDjyy _y (6x,0x,0)N;, DI | (éx1,0x1,0)

Wigner D-function representing the decay of mother particle and resonant particle



Generated amplitude | Fitted amplitude

Fitting results: Toy model R*(892)° = 1.0, 0 10,0

2(1690) =0.8,0 0.8141, -0.0478
=2(1820) =1.0,0.5 1.0063, 0.5042

Sample generated and fitted by AmpTools z(1385)'=1.0,-0.5 | 0.9917,-0.5219
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Fitting results: Toy model

Testing alternate hypothesis:
Sample generated and fitted by AmpTools

2(1690)
M =1.690 GeV/c?
W =0.01 GeV .
J=1/2

=(1820)

M = 1.820 GeV/c?
W =0.01 GeV
J=12' (wrong! ]

K*(892)
M = 0.8947 GeV/c?
W = 0.0445 GeV
J=1
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Generated amplitude | Fitted amplitude

K*(892)°=1.0,0 1.0,0

E(1690) =0.8,0 0.1717, -0.8295

E(1820) =1.0,0.5 0.7502, -0.3169

Z(1385)*=1.0,-0.5 0.7771, -0.7114
. _2In(L) = -404073.9963
3 Much worse!
3 T = e & T 2(1385)-

MR el M = 1.3833 GeV/c?
W =0.0385 GeV

- J=3/2
q.;””zllllIZ.ISH.I.’!II”IS.ISHHAIHHA.ISHHSIHHS.S

Mass?(A K) [GeV/ic*f

AmpTools can extract correct parameters




Fitting result: basf2 reconstructed sample

Sample: Four resonances with equal weight (25%)
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Bootstrap to check uncertainties

AmpTools uncertainties computed from
matrix of second derivatives and may not
be reliable in all cases

To test: bootstrap (from large sample),
compare the standard deviation of the
fitted parameter with uncertainties from
nominal fit

Initial test
e Bootstrap 10,373 events (comparable to
expectations in data) from a sample of
29,973 signal events

e Mass and width of resonances = fixed
e Constrain K* amplitude to be real
e Free parameters: 7 (real/imag amps)

1y R*

Xi*(1820)

. 0=1161.68

u =28536.26
0 =930.30

p = 36096.96

,‘ # of évents

Xi*(1690)

© u=34231.07
' 0 =839.20

5 Z*

p = 32484.58
10=1371.84

~ #ofevents

# of events

*Requires larger statistics sample (pending), but
uncertainties underestimated (~few percent)




Next steps and plans

e Ongoing: Amplitude analysis of /\C+-> p K 11 to check the fitting model (by comparing with the result from
LHCDb)

e Fine tune fitting method to find global minimum by randomizing the parameters
e Finalize check on uncertainties by bootstrapping from a larger sample
e Study the helicity angles of K* distribution and finalize the model to be used for fitting.

e Before looking Data: Final steps of fitting method include adding and removing amplitudes and checking
their significance

e Systematic studies



Extra slides



FOM optimization
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Theoretical background L I,
e amplitude for 22 — A°K—7* © UMM (3) =< AK— | H|E? > ; — 2 —< 3 2
Often include (complex) 3 2 1
e can be parameterized as: UM (3) = ¥ Vi 4]0 (@) non-resonant term
o V=kBW, ]
Vivax = kixax BWi, 2« describes the propagator of the intermediate state and
its coupling to =0 and Aj.‘i’j\’)‘( describes the angular distribution of final-state particles. -0 X 2
e The density of events at z is given by the intensity: I(z) = Y [UM* (z)]? coupling (k) .
M,

e To extract the couplings, k;,,», ,an unbinned maximum likelihood fit is performed on A°k-=* invariant mass.

e The probability to find an event in the detector at some location in phase space, 7, is given by

f(wiIZ) = M , 1(@) is the efficiency of the detector to find an event at z
[ (@) I(z[¢) da
e The propagator is described by a Breit-Wigner function and the coupling is set as a free parameter in an unbinned,
maximum likelihood fit to the data. The number and type of intermediate states is varied until an optimal solution is
found. Any remaining backgrounds are accounted using background samples added to the data set with negative
weights.
o Nata 4 NJI:;Z‘ o
L&) = 11 £16) 11 f(@i16) ™ 13

i=1 j



Dalitz plots
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dhist
- Entries 836045 pp
B PrOC13 Mean x 3.074
B Mean y 1.113
- Std Devx 0.6819
_ Std Devy  0.3833 p
B e Bl aen ey By gy o8] ey gy o yeg oy oy (B op el e ey 0
D 2 25 3 35 4 4.5 5 55
m2(p K)



1000

800

600

400

200

1200

1000

800

600

400

200

Helicity angles of K*
K* being a vector, J = 1

Toy sample by AmpTools
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Signal MC by basf2
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Generic MC by basf2
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xpected curved helicity angle

e basf2 generated sample have almost flat distribution
(study going on: might be helpful to address fitting fractions)



