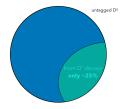
The new Belle II charm-flavor tagger

Marko Starič


CHARM 2023

Introduction

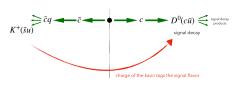
 Flavor tagging is an essential ingredient of any CPV/mixing measurement

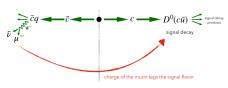
- Standard approach
 - exclusive reconstruction of $D^{*+} \rightarrow D^0 \pi^+$
 - ullet only about 25% of D^0 can be tagged

• New charm flavor tagger (CFT)*

PRD 107, 112010 (2023)

- exploits also information from other charmed hadron produced in $e^+e^- \to c\overline{c}$
- by using charged particles not associated with the signal decay
- these are part of the rest of the event (ROE)
- include both, opposite-side and same-side particles
- \rightarrow conventional D^{*+} tagging is thus incorporated


^{*} inspired by B-flavor tagging algorithms

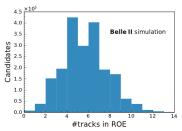


Few illustrations

opposite side kaon tag

opposite side lepton tag

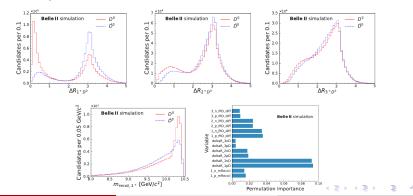
same side slow pion tag



- Not shown are particles emerging directly from fragmentation
- Other ROE particles whose charge is likely to be correlated with D^0 flavor are also used in CFT (opposite side slow pions, protons and pions)

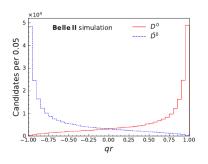
Tagging algorithm

- Tagging decision provided with a binary classifier
 - histogram-based gradient-boosting decision tree (scikit-learn lib)
- ROE particles classified into two groups depending on their charge and ranked according to opening angle w.r.t D^0 momentum (in e^+e^- center-of-mass frame)
 - more collinear than those emerging purely from fragmentation
- The three top-ranked positive and the three top-ranked negative particles are selected for classification
 - 3 + 3 found optimal
 - if event contains less, the missing ones are labeled as missing values

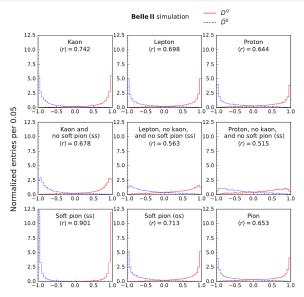

Number of ROE tracks

 $D^0
ightarrow
u
u$ simulation

Classifier input


- Classifier input variables:
 - opening angles
 - differences between pion and kaon particle ID (likelihoods)
 - recoil masses of the highest-ranked positive and negative particle $m_{\rm recoil} = \sqrt{({\bf p}_{e^+e^-} {\bf p}_{ROE})^2}$
 - ightarrow 14 inputs in total

Classifier training


- Trained using simulated $D^0 \to \nu \nu$ events
 - to minimize possible correlations with the signal decay
 - every reconstructed particle belongs to ROE
- Trained with 1.35M decays
- Tested then with independent sample of 450k $D^0 o
 u
 u$ events

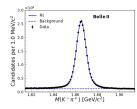
 \rightarrow correct flavor predicted in \sim 83% of decays

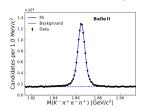
Classifier response to different tagging categories

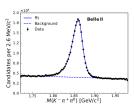
Standard metrics of tagging performance

tagging efficiency:
$$\epsilon_{tag} = \frac{R+W}{R+W+U}$$
 mistag fraction:
$$\begin{cases} \frac{W}{R+W} & \text{if } W\leqslant R \\ 1-\frac{W}{R+W} & \text{otherwise} \end{cases}$$
 dilution:
$$r=1-2\omega$$
 tagging power:
$$\epsilon_{\text{tag}}^{\text{eff}} = \epsilon_{\text{tag}} r^2 = \epsilon_{\text{tag}} (1-2\omega)^2$$
 tagging decision:
$$q=\pm 1$$
 R (W), U: rightly (wrongly) tagged, untagged D^0 candidates $q:+1$ for $D^0,-1$ for D^0

classifier output = $q \times r$


Performance evaluation


- Evaluated on 362 fb⁻¹ of Belle II data
- Performance studied with the following self-tagged signal decays


•
$$D^0 \to K^-\pi^+$$
, $D^0 \to K^-\pi^+\pi^-\pi^+$, $D^0 \to K^-\pi^+\pi^0$

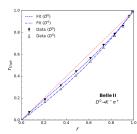
$$\bullet$$
 $D^+ o K_5^0 \pi^+$, $D^+ o K^- \pi^+ \pi^+$

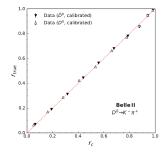
- $\Lambda_c^+ \to p \check{K}^- \pi^+$
- Inclusion of charged hadrons provides insight into contributions from various tagging categories (i.e. no same-side slow pion)
- Decay reconstruction involves selection of well fitted tracks from IR, our standard K_s^0 and π^0 reconstruction, particle ID and vertex fits

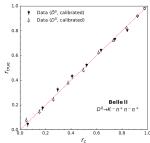
Background subtraction performed by sPlot technique

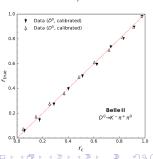
Performance: results

Signal decay	$\varepsilon_{\mathrm{tag}}$ (%)	$\Delta \varepsilon_{\mathrm{tag}}$ (%)	ω (%)	$\Delta\omega$ (%)	$\varepsilon_{\mathrm{tag}}^{\mathrm{eff}}$ (%)
$D^0 o K^- \pi^+$	99.974 ± 0.004	-0.002 ± 0.007	19.09 ± 0.08	0.36 ± 0.17	38.22 ± 0.20
$D^0 \rightarrow K^-\pi^+\pi^-\pi^+$	99.794 ± 0.020	0.042 ± 0.039	19.13 ± 0.16	0.40 ± 0.32	38.05 ± 0.38
$D^0 \rightarrow K^- \pi^+ \pi^0$	99.967 ± 0.006	-0.006 ± 0.012	19.34 ± 0.13	-0.22 ± 0.26	37.58 ± 0.32
$D^+ \rightarrow K^- \pi^+ \pi^+$	99.843 ± 0.007	-0.026 ± 0.014	27.86 ± 0.08	0.80 ± 0.16	19.57 ± 0.14
$D^+ o K_{\rm s}^0 \pi^+$	99.846 ± 0.019	0.037 ± 0.038	27.92 ± 0.23	1.83 ± 0.46	19.47 ± 0.41
$\Lambda_c^+ \to p K^- \pi^+$	99.832 ± 0.008	-0.022 ± 0.016	32.44 ± 0.09	0.52 ± 0.18	12.31 ± 0.13


 $\Delta\epsilon_{\rm tag}$ and $\Delta\omega$ measure the difference between charm and anti-charm hadron contributions from wrong-sign D^0 decays are accounted for


- Tagging efficiency almost 100%
 - independent of charmed hadron and its decay mode
- Mistag fraction independent of decay mode, but depends on the charmed hadron
 - absence of same-side slow pion in D^+ and Λ_c^+ flavor tagging
 - presence of proton tag in Λ_c^+ flavor tagging
- Mistag difference $\Delta\omega$
 - consistent with zero for D⁰
 - significant deviations from zero for D^+ and Λ_c^+ due to charge detection asymmetry (ROE is not neutral)




Calibration of CFT output

- Deviations from linear found when compared CFT output with true dilution
- CFT output corrected by calibration curve obtained from fit to $D^0 o K^-\pi^+$

- Measured with $D^0 \to K^-\pi^+$ on 362 fb⁻¹
- With calibrated CFT output:

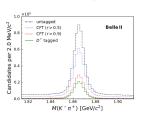
$$\epsilon_{\mathrm{tag}}^{\mathrm{eff}} = (47.91 \pm 0.07 (\mathrm{stat}) \pm 0.51 (\mathrm{syst}))\%$$

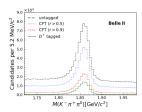
- Systematic uncertainty dominated by background subtraction
 - should scale according to integrated luminosity

Impact on physics

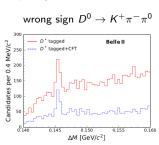
- Effective increase in sample size estimated with $D^0 o K^-\pi^+$
- Split into two disjoint subsets
 - D*+ tagged events
 - ullet events that are not D^{*+} tagged

 54.4 fb^{-1} of Belle II data


subset	signal yield	tagging power	tagged yield
D^{*+} tagged	126k	\sim 100%	126k
the rest	388k	32.7%	127k


- \rightarrow effectively doubling the tagged sample size
- \rightarrow but increasing also background, hence increase in precision $<\sqrt{2}$

Impact on physics


- CFT provides also some discrimination between signal and background
- CFT output can be used in analyses not requiring flavor tagging
 - as additional variable in multi-dimensional fit
 - or as part of event selection to improve signal purity

Signal purity

Signal parity					
tagging	$D^0 o K^-\pi^+$	$D^0 o K^-\pi^+\pi^0$			
untagged	0.67	0.34			
CFT $r > 0.5$	0.73	0.38			
CFT $r > 0.9$	0.84	0.53			
D^{*+}	0.94	0.80			

Doubly tagged sample: much improved S/B only 24% signal loss

- Novel charm-flavor tagging algorithm developed for Belle II.
 - Explores correlations between production flavor and electric charges of particles in ROE.
 - Uses boosted decision trees trained on simulated data.
- Response calibrated and evaluated on data with several self-tagged D^0 decays. The effective tagging efficiency is around 48% and independent of the D^0 decay mode.
- It can roughly double the effective sample size for charm CPV/mixing measurements.
- It can be used also to suppress background for the measurements where flavor tagging is not required.