Dark matter search at Belle II

Enrico Graziani

INFN – Roma 3

on behalf of the Belle II Collaboration

OUTLINE OF THE TALK

- ✓ Light dark sector models
- ✓ Belle II and SuperKEKB
- ✓ An example: L_{μ} - L_{τ} invisible Z'
- ✓ Results
- ✓ Perspectives & Summary

Peak luminosity trend

SuperKEKB

Final goal: $L= 50 \text{ ab}^{-1} (\sim 2030)$

Very rich physics program

Flavour physics

- **CKM** matrix
- see S.Robertson's talk CPV in B deacys

BSM physics

- Rare decays
- NP in loops in $b \rightarrow s\gamma$, $b \rightarrow sll$
- $B \rightarrow D^{(*)} \tau \nu$
- LFV in τ decays

New particles (quarkonium)

Dark sector

Dark matter hunt: «classical» approach

Intensity / precision frontier

New virtual particles in loops/trees transitions, deviation from SM expectations (B factories, LHCb)

If NP found in direct searches, it is reasonable to expect NP effects in *B*, *D*, *tau* decays

Energy frontier

Direct production of new particles limited by beam energy (LHC – ATLAS, CMS)

Cosmic frontier

Direct effect search in (mostly) underground experiments

Alternative DM scenario: light WIMPs ⇔ light mediators

Light dark matter not ruled out if dark mediator(s) exist

If annihilation via a light force carrier, χ can be as light as few MeV

Possibility of Light New Physics, mostly with tiny couplings. Some models are minimal (but UV safe) and show diverse DM fenomenology

Dark matter hunt: alternative approach

LDM → Light Dark Matter Mediators → portals

Light Dark Sector with interactions \sim unsuppressed by a (possibly large) NP scale Λ

Energy frontier

Direct production of new particles - limited by beam energy (LHC – ATLAS, CMS)

Direct effect search in (mostly) underground experiments

What can we do at B-factories that we can't at the LHC?

- Closeness to the light region
- Clean, low background, «energy conserving» environment, closed kinematics
- 3d momentum conservation, as opposed to p_T
- Easiness of tag & probe techniques
- Full Event Interpretation

- Low multiplicity signatures
- Missing energy channels
- Invisible particles, often in closed kinematics regime
- Some fully neutral final states accessibility
- Dark sector signatures in B and τ decays
- Cleanliness and luminosity sometimes compensate for cross section → competition

Searching for dark matter

Dark Sector Candidates, Anomalies, and Search Techniques

Dark matter/mediators

Light Dark matter hunt

Different signatures depending on the DM \leftrightarrow mediator mass relation

Probability of interaction of LDM detectors is negligible

- Search for mediators
- Search for missing energy signature
- Search for both

Additional benefits:

- Explanations of some astrophysics anomalies (PAMELA, AMS, FERMI, ...)
- Explanation of the $(g-2)_{\mu}$ effect
- Explanation (with additional hypotheses) of some flavour anomalies (LHCb, Belle, ...)
- Some light mediators (not interacting with quarks) could escape direct search exclusion limits

From KEKB to SuperKEKB

- moderately increased beam currents
- Squeeze beams @IP by ~1/20

From KEKB to SuperKEKB

- **Upgraded rings** ➤ New e⁺ Damping Ring > Increased currents **x30** Nano-beam scheme New Final Focus magnets (QCS) > Large crossing angle
 - Final goal: 50 ab⁻¹

Peak luminosity world record: 4.7 x 10³⁴ cm⁻² s⁻¹

Currently in shutdown LS1 since July 2022

Collected luminosity up to now: 2019-2022

Restart run in december 2023 Resume physics run beginning 2024

Belle II detector **KLM** K, and muon detector **ECL** μ ID-eff: ~90% **EM Calorimeter** σ(E): 4%-1.6% **TOP + ARICH** particle identification electrons (7GeV) fake- π rate: 5% CDC Trigger: central drift chamber L1: < 30 kHz spacial resol: 100 µm dE/dx resol: 5% **HLT:** < 10 kHz p_⊤ resol: 0.4 % dedicated lines for dark physics positrons (4GeV) PXD + SVD vertex detector vertex resolution: 15 μm

Key factors for dark sector physics: trigger, high backgrounds, precise knowledge of acceptance/vetoes, PID

2 layer pixel detector (PXD) 2nd incomplete 4 layer double-sided strip detector (SVD)

Belle II trigger

Dark sector physics

- Low multiplicity signatures
- Huge backgrounds from beam, Bhabha, two-photon

Level 1 hardware-based combines info from CDC, ECL, KLM

- Tracks, clusters, muons
- Two-track trigger
- Three-track trigger
- E_{ECL}> 1 GeV trigger

Single muon

CDC + KLM

Single track

Neural based

Single photon

• $E_{\gamma} > 0.5$, 1, 2 GeV

Belle II dark sector search overview

Searches are usually driven by models or proceed according to heuristic approaches

Models ↔ Signatures ↔ Topologies

Models are growing up ~ exponentially (a warm thank's to theoreticians to provide us so many ideas). They should be used both to exclude (or confirm!) and as wonderful excuses to search for signatures & topologies as model independently as possible

Axion like particles $ALP \rightarrow \gamma \gamma$

Invisible α in τ decays $\tau \rightarrow l\alpha$

Dark Higgsstrahlung A'h' A'→μμ, h' invisibile LLP dark scalar in B decays $B \rightarrow kS$ $S \rightarrow ee$, $\mu\mu$, $\pi\pi$, kk

In progress

LLP Dark Higgsstrahlung with IDM A'h' A' $\rightarrow \chi_1 \chi_2$, h' $\rightarrow \mu \mu$, $\pi \pi$, kk

Invisible dark photon $\gamma A' \quad A' \rightarrow \chi \chi$

Z': L_{μ} - L_{τ} model

Sterile v's

Light Dirac fermions

- Gauging L_{μ} L_{τ} , the difference of leptonic μ and τ number
- A new gauge boson which couples only to the 2° and 3° lepton family
- Anomaly free (by construction)
- It may solve
 - > dark matter puzzle
 - \triangleright (g-2)_{μ}
 - \rightarrow B \rightarrow K(*) $\mu\mu$, R_K, R_{K*} anomalies

Shuve et al. (2014), arXiv 1408.2727 Altmannshofer et al. (2016) arXiv 1609.04026

Z': L_{μ} - L_{τ} model

Sterile v's

Light Dirac fermions

- Gauging L_{μ} L_{τ} , the difference of leptonic μ and τ number
- A new gauge boson which couples only to the 2° and 3° lepton family
- Anomaly free (by construction)
- It may solve
 - dark matter puzzle
 - \triangleright (g-2)_{μ}
 - \rightarrow B \rightarrow K(*) $\mu\mu$, R_K, R_{K*} anomalies

Shuve et al. (2014), arXiv 1408.2727

Altmannshofer et al. (2016) arXiv 1609.04026

Sterile neutrino abundance

Z': L_{μ} - L_{τ} model

Sterile v's

Light Dirac fermions

- Gauging L_{μ} L_{τ} , the difference of leptonic μ and τ number
- A new gauge boson which couples only to the 2° and 3° lepton family
- Anomaly free (by construction)
- It may solve
 - > dark matter puzzle
 - \triangleright (g-2)_{μ}
 - \rightarrow B \rightarrow K(*) $\mu\mu$, R_K, R_{K*} anomalies

Shuve et al. (2014), arXiv 1408.2727 Altmannshofer et al. (2016) arXiv 1609.04026

Z' to invisible: first Belle II physics result

Explored for the first time

 $e^+e^- \rightarrow \mu^+\mu^- + missing\ energy$

Look for bumps in recoil mass against a μ⁺μ⁻ pair

Main backgrounds:

$$\begin{array}{l} e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}(\gamma) \\ e^{+}e^{-} \rightarrow \tau^{+}\tau^{-}(\gamma), \ \tau^{\pm} \rightarrow \mu^{\pm}\nu\nu \\ e^{+}e^{-} \rightarrow e^{+}e^{-}\mu^{+}\mu^{-} \end{array}$$

Z' to invisible: first result

Pilot run physics results

Systematics

<u> </u>	
Source	Error
Trigger efficiency	6%
Tracking efficiency	4%
PID	4%
Luminosity	1.5%
Background before τ suppression	2%
τ suppression (background)	22%
Discrepancy in μμ yield (signal)	12.5%
will decrease with new data	

PRL 130, 231801 (2023)

fully invisible Z' as origin of $(g-2)_{\mu}$ excluded for $0.8 < M_{Z'} < 5.0 \text{ GeV/c}^2$

Reinterpreted also as

- Leptophilic dark scalar S → (g-2)_μ
- ALP with τ coupling

Accepted by PRL arXiv:2306.12294

see M.Laurenza's talk

UL on g'

 10^{-2}

10-4

Axion like particles $ALP \rightarrow \gamma \gamma$

Pilot run physics results

see L.Zani's talk

PRL 125, 161806 (2020)

Axion like particles $ALP \rightarrow \gamma \gamma$

Belle II physics reach @ Snowmass arXiv: 2207.06307v1

Dark Higgsstrahlung

A'h' A' $\rightarrow \mu\mu$, h' invisibile

see L.Zani's talk

PRL 130, 071804 (2023)

Dark Higgsstrahlung A'h' A' $\rightarrow \mu\mu$, h' invisibile

Belle II physics reach @ Snowmass arXiv: 2207.06307v1

Invisible α in τ decays $\tau \rightarrow l\alpha$ $l=e,\mu$

see L. Zani's talk

LLP dark scalar in B decays

B→kS S→ee, $\mu\mu$, $\pi\pi$, kk

 $S \rightarrow \mu^+\mu^- / \pi^+\pi^- / K^+ K^-$

Submitted to PRL arXiv:2306.02830

In progress Belle II dark searches

Dark photon: introduction

P. Fayet, Phys. Lett. B **95**, 285 (1980), P.Fayet, Nucl. Phys. B **187**, 184 (1981)

- Paradigm of the vector portal extension of the SM
- QED inspired: U(1)' → new spin 1 gauge boson A'
- Couples to SM hypercharge Y through kinetic mixing ε
- Couples to dark matter with strength α_{D}
- Mass through Higgs or Stuckelberg mechanism

Minimal dark photon

two basic scenarios depending on A' vs χ DM mass relationship

 $m_{A'} < 2m_{\chi} \Rightarrow A'$ decays visibly to SM particles (*I, h*)

 $m_{A'} > 2m_{\chi} \Rightarrow A'$ decays $\approx 100\%$ invisibly to DM particles

Dark photon: luminosity projections

Inelastic dark matter with dark Higgs

- Dark photon A' and dark Higgs h'
- Two dark matter states χ_1 and χ_2 with a small mass splitting
- χ_1 is stable \rightarrow dark matter candidate
- χ_2 is generally long-lived
- h' is generally long-lived and mixes with SM H₀
- Signature: up to two displaced vertices

Belle II and SuperKEKB after shutdown

- Currently in shutdown LS1 since summer 2022
 - Accelerator upgrades: mitigate background and increase luminosity
 - Detector upgrades: two layer pixel detector installed
- Restart SuperKEKB in december 2023 and physics beginning of 2024
- Path to 2x10³⁵ cm⁻²s⁻¹, but new interaction region to go beyond
 - Possible LS2 ~2027
 - Belle II upgrades under study

Target scenario: extrapolation from 2021 run including expected improvements.

Base scenario: conservative extrapolation of SuperKEKB parameters from 2021 run

Dark sector searches in Belle II: future directions

- Align all the searches to the full pre-shutdown luminosity 424 fb⁻¹
- In most cases with improved analysis techniques: second generation searches
- We have already reasonable luminosity projections for some of the analyses (Snowmass)

- We need to enter the dark photon business: both visible and (especially) invisible.
- My guess: LLP searches will have a considerable weight in the next years (especially with a new displaced-vtx trigger).
 Low SM background, open the possibility to explore small couplings
- > Some searches are motivated more than others by g-2 anomaly. Their future may depend by external inputs. My guess: the g-2 focus is moving (has moved?) in the theory field: dispersion relations vs lattice.
- ☐ Luminosity will increase, background will increase as well.
- Most of the searches have low multiplicity signatures → badly affected by machine background
- ☐ Best effort to keep the single-object (track, muon, photon) trigger lines in working conditions
- ☐ Display-vertex trigger needed (efficiency decreases abruptly with lifetime): in preparation

* We are eager of new dark models. Theorists never disappoint our expectations

Summary

- The persisting null results from new physics at LHC searches and in direct underground searches make the light dark sector scenario more and more attractive.
- Belle II started a broad program of searches orthogonal/complementary to LHC
- Will lead the world sensitivity in most of them