

Dark Matter Studies in Accelerator Physics 3rd DMNet international symposium 26-28 September 2023 Palazzo Moroni, Padua, Italy

Search for (pseudo-)scalar and long-lived particles at Belle II

Laura Zani*
on behalf of the Belle II collaboration
28.09.2023, Padova

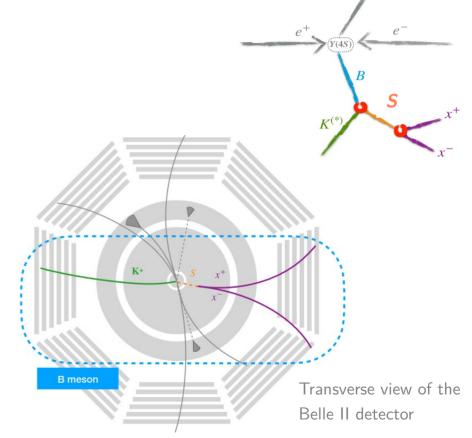
Outline

- Long-lived pseudo-scalar particles
- Invisible boson in τ decays
- Axion-like Particles
- Dark higgsstrahlung
- Outlook

light mediator X:

- Pseudo-scalar portal o **Axion Like Particles (ALPs)**
- Scalar portal o **Dark higgs/Scalars**
- Vector portal \rightarrow Dark Photons, Z' bosons
- Neutrino portal \rightarrow Sterile Neutrinos

M.Laurenza's talk this afternoon!

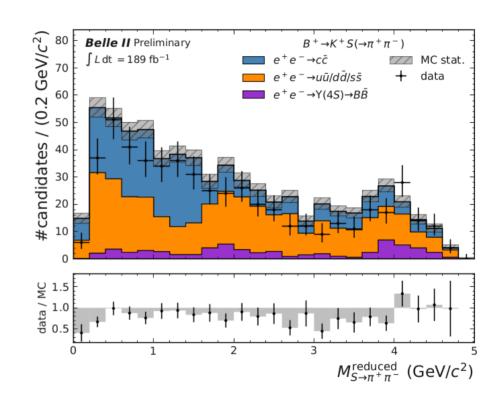

Search for long-lived (pseudo)scalar in b→s transitions

• First model-independent search for dark scalar particles S from B decays in rare $b \rightarrow s$ transition

• S could mix with SM Higgs with mixing angle θ_s (naturally long-lived for $\theta_s << 1$). For $M_S < M_B$ decay to dark

matter kinematically forbidden by relic density constraint

- Look for S decays into SM final states in 8 exclusive channels:
 - $^-B^+ \rightarrow K^+S$ and $B^0 \rightarrow K^{*0} (\rightarrow K^+\pi^-)S$, with $S \rightarrow ee/\mu\mu/\pi\pi/KK$
- B-meson kinematics to reject combinatorial ee→ qq background
- SM long-lived K⁰_s mass region vetoed → excellent control sample in data to evaluate LLP performance (efficiencies, shapes)
- Further peaking backgrounds suppressed by tighter displacement selection

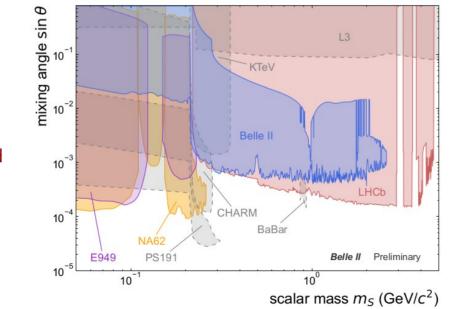


Search for LLP: signal extraction

- Bump hunt in the LLP mass with unbinned maximum likelihood fits to
 - using the reduced mass spectrum easier to model at threshold, separately for each channel and lifetime

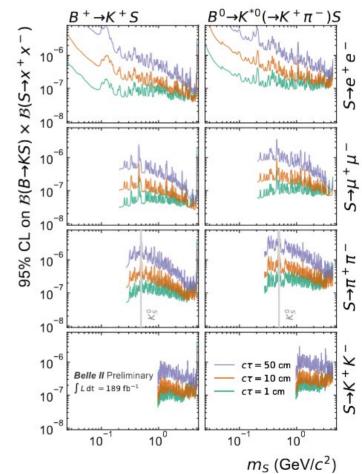
$$M_{S \to x^+ x^-}^{\text{reduced}} = \sqrt{M_{S \to x^+ x^-}^2 - 4m_x^2}$$

 Background determined directly in data (robust against un-modelled non-peaking background)

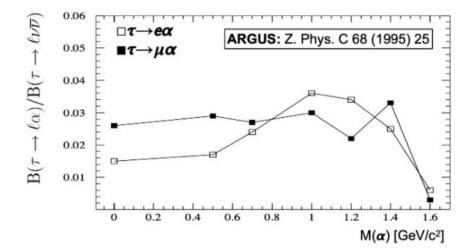


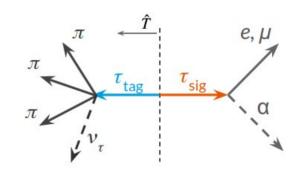
First model independent results for LLP

• No significant excess found in **189** fb⁻¹ \rightarrow first model-independent 95% CL upper limits on BF(B \rightarrow K*S) \times BF(S \rightarrow x+x $^-$) and BF(B \rightarrow K+S) \times BF(S \rightarrow x+x $^-$)


First limits on exclusive hadronic final states

- \rightarrow best sensitivity for direct search for $K^*e^+e^-$ final state
- Translate into model dependent limits on m_s vs $\sin \theta_s$, with $c\tau_s = f(m_s, \theta_s)$

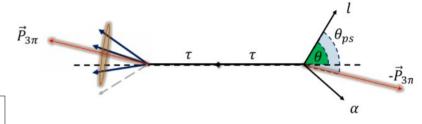

Combined scalar and ALP model fit [1]



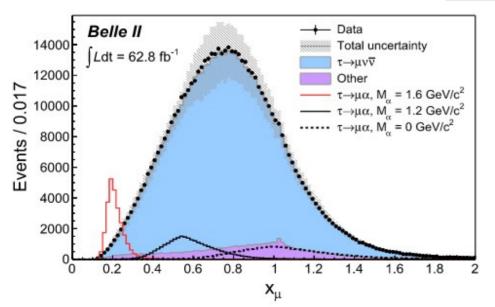
Invisible boson in lepton-flavor violating τ decays

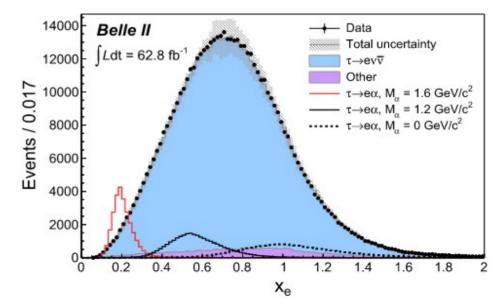
- τ decays to new LFV bosons decaying invisibly predicted in many models, possible ALPs candidates^[1]
- Previously at **ARGUS** [2]($\sim 0.5 \text{ fb}^{-1}$) \rightarrow Belle II analysis relies **120 x luminosity**
- Search for the process $e^+e^- \to \tau_{sig} (\to \ell\alpha) \tau_{tag} (\to 3\pi\nu)$, with $\ell = e$ or $\ell = \mu$

- Split event in two hemispheres based on the *thrust axis:*
 - three tracks on the tag side, one track on the signal side
 - exploit the **shape differences**: 2-body decay of signal (peaking in some kinematics features) over 3-body decay of irreducible background from $\mathbf{T}_{\text{SM}} \rightarrow \ell \mathbf{VV}$

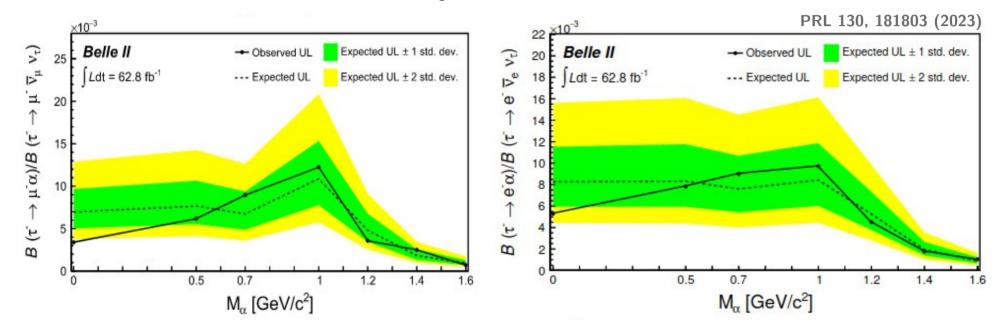

$$\vec{T} = max \left(\sum_{i} \frac{\vec{p_i} \cdot \hat{T}}{|p_i|} \right)$$

[2] ARGUS Collaboration, Z. Phys. C 68, 25 (1995)

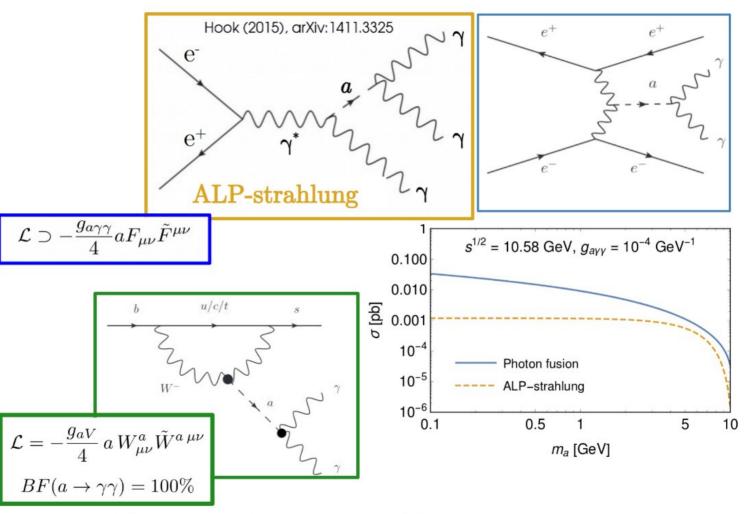

Pisa, 2023/05/17

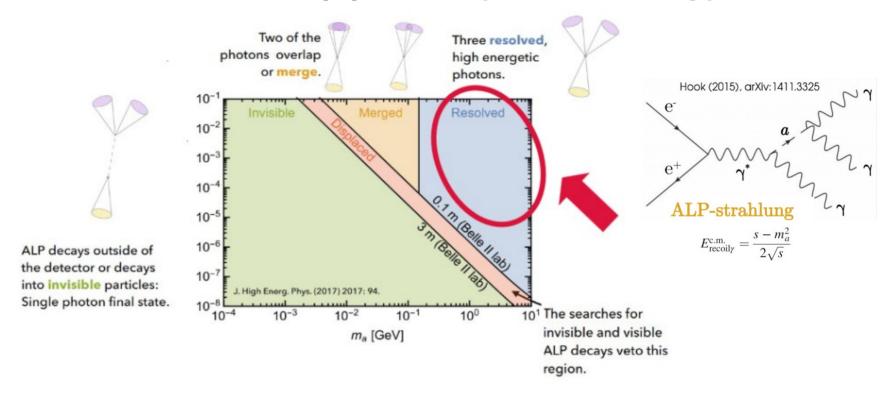

τ pseudo-rest frame

- Shape differences more prominent in the rest frame: approximate \mathbf{T}_{sig} pseudo-rest frame as $\mathsf{E}_{\text{sig}} \sim \sqrt{\mathsf{s}/2}$ and $\hat{p}_{\text{sig}} \approx -\vec{p}_{\tau_{\text{tag}}}/|\vec{p}_{\tau_{\text{tag}}}|$
- Discriminating variable: normalized lepton energy x
 - Bump hunt above broad spectrum from $\tau_{sM} \rightarrow \ell \nu \nu$


$$x_{\ell} \equiv \frac{E_{\ell}^*}{m_{\tau}c^2/2},$$

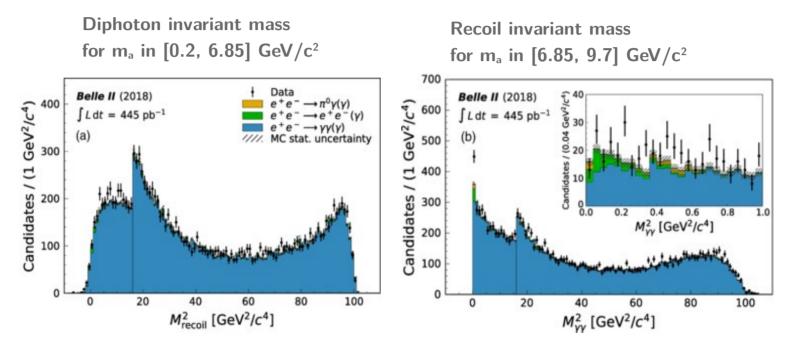
Invisible boson in LFV τ decays: results


- No significant excess found in 62.8 fb-1
- Set 95% CL upper limits on BF ratios of $BF(\tau_{sig} \to \ell\alpha)$ normalized to $BF(\tau_{SM} \to \ell\nu\nu)$


Between 2-14 times more stringent than previous limits

Axion-like particle

- Axion-like particles (ALPs) are pseudo-scalars coupling mainly to bosons, with non-renormalizable coupling constants [g_{aV}] $\sim 1/M$
- Explored photon coupling g_{ayy} in *ALP-strahlung* processes
 (*photon fusion:* sensitivity under study)
- Exploit flavor changing neutral current and rare meson decays to investigate g_{aW} coupling ongoing studies for B→Ka

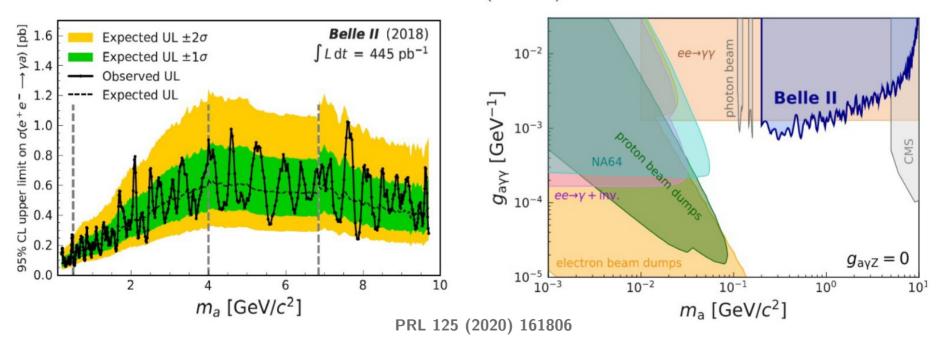

Search for a $\rightarrow \gamma \gamma$: analysis strategy

- Select fully **neutral events** consisting of **three isolated photons** with a total invariant mass consistent with center of mass energy → optimize to maximize ALP sensitivity
- Use calorimeter trigger (ECL efficiency almost 100%)

Search for a $\rightarrow \gamma \gamma$: signal extraction

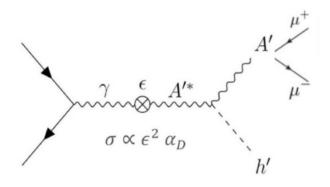
• Signal yield extracted with binned extended max likelihood fits in sliding ranges (half mass resolutions step) to:

 \rightarrow no excess found (highest local significance of 2.8 σ)

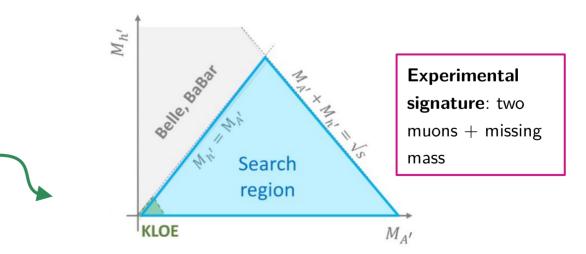

Data set: **445 pb**⁻¹ from 2018 pilot run

PRL 125 (2020) 161806

Search for a $\rightarrow \gamma \gamma$: results


• Set 95% CL upper limits on the signal cross section and g_{aγγ} coupling

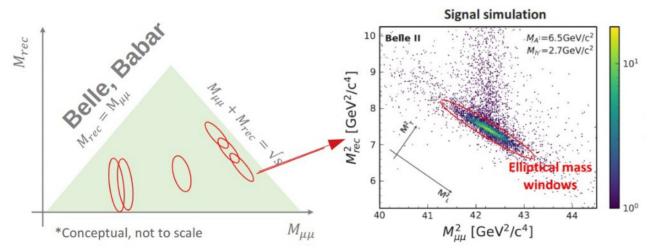
$$\sigma_a = rac{g_{a\gamma\gamma}^2 lpha_{
m QED}}{24} \left(1 - rac{m_a^2}{s}
ight)^3
ightarrow ext{World's best limit around 500 MeV}$$


Dark higgsstrahlung

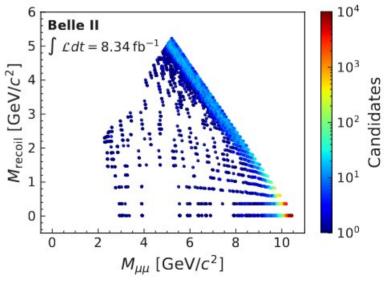
• Dark photon (A') mass can be generated via a spontaneous symmetry breaking(*) mechanism, by adding a dark Higgs boson (h'): dark Higgsstrahlung process, $e^+e^- \rightarrow A' \rightarrow h A'$

- Belle II has unique capability to probe the invisible h' decay $(m_{h'} < m_{A'})$ with A' decaying to a muon pair
- Previously constrained only by KLOE(**)

- 4 parameters (no mixing with SM Higgs assumed): $m_{h'}$, $m_{A'}$, ϵ , α_D
- $M_{h'}>M_{A'}$: visible dark higgs, already searched by Belle, Babar
- $M_{h'} < M_{A'}$: invisible decays of h'



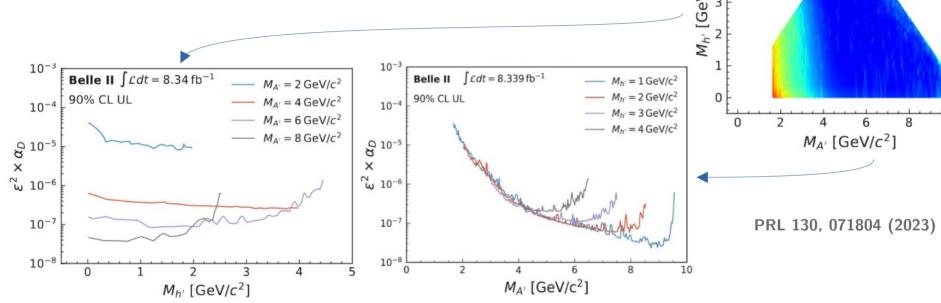
^{*} Batell, Pospelov, Ritz, Phys. Rev. D 79, 115008 (2009)

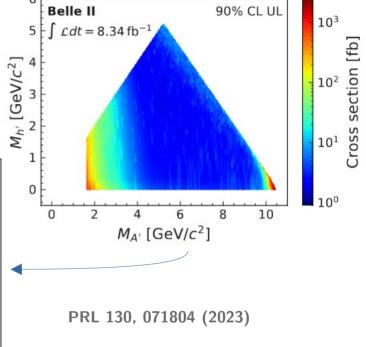

^{**} Babusci et al. (2015), Phys.Lett. B 747 pg. 365-372, 0370-2693

Dark higgsstrahlung: analysis strategy

- A' reconstructed as muon pairs, $M_{uu} > 1.65$ GeV for trigger requirements (two-track trigger)
- Background from radiative QED processes
 - \rightarrow same final state as for the invisible Z' search M.Laurenza's talk
- Scan dimuon and recoil mass searching for peaks in 9000 overlapping elliptical windows
- Apply Bayesian counting technique (challenging look-elsewhere effect)

 \rightarrow observed yields in 8.34 fb⁻¹ data (2019)

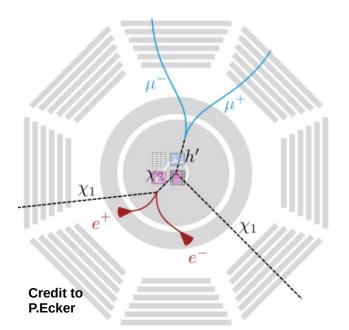



No signal excess found

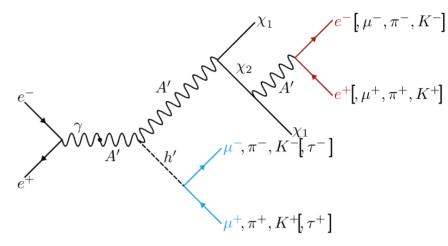
Padova, 2023.09.28 L.Zani, Long-lived and dark scalar searches at Belle II

Dark higgsstrahlung: results

- World leading results in unexplored phase space region
 - probe non-trivial $\varepsilon^2 \times \alpha_D$ couplings



World leading results for $1.65 < M_{A'} < 10.51 \text{ GeV/c}^2 \rightarrow \text{can be interpreted}$ in a wider class of theoretical models (e.g., long-lived higgs mixing with h_{SM})


Padova, 2023.09.28 15 L.Zani, Long-lived and dark scalar searches at Belle II

Inelastic dark matter with dark higgs

- Dark photon A' and dark higgs h'
- Dark matter states χ_1 and χ_2 with a small mass splitting:
 - χ_1 is stable (contributes to relic density)
 - χ_2 is long-lived at small values of kinetic-mixing coupling (arepsilon)

Transverse view of the Belle II detector

JHEP 04 (2021), arXiv:2012.08595

Experimental signature: up to two displaced vertices + missing energy

ightarrow unconstrained by direct detection experiments, both inelastic and elastic scattering suppressed

Inelastic DM with dark higgs: analysis strategy

- Perform a bump hunt on the invariant mass of the dark higgs $M_{h'}$
- Set limits on dark higgs mixing angle θ as function of dark higgs mass $M_{h'}$ as varying the other five parameters

Experimental challenges:

1) dropping of reconstruction and trigger efficiencies with displacement of the vertices

Model Parameters [JHEP 04 (2021), arXiv:2012.08595]

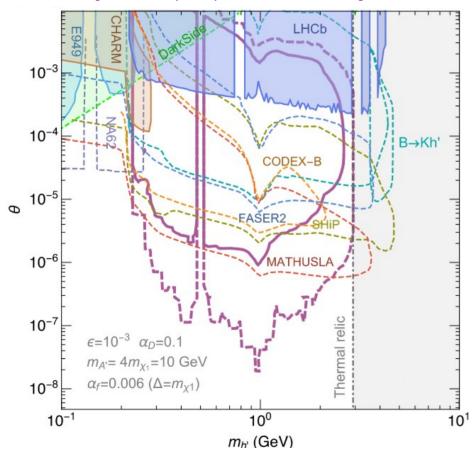
- 1) Mass of the Dark Photon, $(M_{A'})$
- 2) Mass of the $\chi 1$, $(m_{\chi 1})$
- 3) Mass of the Dark Higgs (M_{h'})
- 4) Mixing Angle of Dark Photon and SM (ε)
- 5) Mixing Angle between dark higgs and SM Higgs (θ)
- 6) Coupling of Dark Photon to DM (gx)
- 7) Coupling of Dark Higgs to DM (f)
- New algorithms could recover reconstruction losses at reprocessing level
- Trigger losses are NOT recoverable, devise dedicated line, exploit calorimeter information

Inelastic DM with dark higgs: analysis strategy

- Perform a bump hunt on the invariant mass of the dark higgs $M_{h'}$
- Set limits on dark higgs mixing angle θ as function of dark higgs mass $M_{h'}$ as varying the other five parameters

Experimental challenges:

- 1) dropping of reconstruction and trigger efficiencies with displacement of the vertices
- 2) efficiency depends on the beam background conditions


Model Parameters [JHEP 04 (2021), arXiv:2012.08595]

- 1) Mass of the Dark Photon, $(M_{A'})$
- 2) Mass of the $\chi 1$, $(m_{\chi 1})$
- 3) Mass of the Dark Higgs (M_{h'})
- 4) Mixing Angle of Dark Photon and SM (ε)
- 5) Mixing Angle between dark higgs and SM Higgs (θ)
- 6) Coupling of Dark Photon to DM (gx)
- 7) Coupling of Dark Higgs to DM (f)

Effects can be studied and modeled

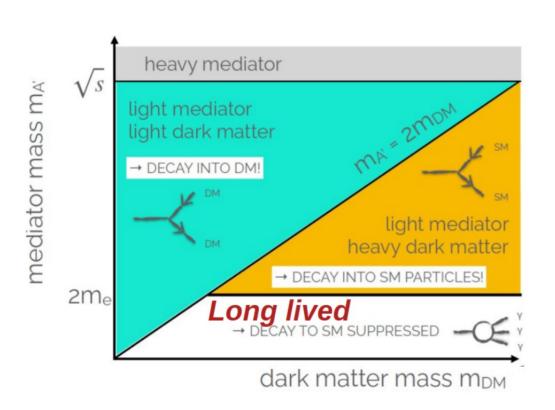
Inelastic DM with dark higgs: sensitivity

[JHEP 04 (2021), arXiv:2012.08595]

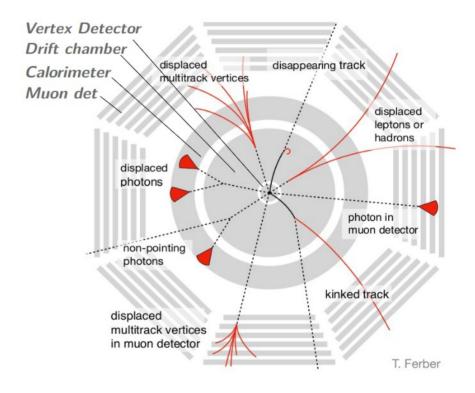
- Belle II expected sensitivity for $100~{\rm fb^{-1}}$ (solid) and $50~{\rm ab^{-1}}$ (dashed)
- Preliminary studies show lower efficiencies \rightarrow one order of magnitude less sensitive
- Mandatory to implement new trigger for displaced vertex detection

Outlook and conclusion

Belle II has **unique sensitivity** for light dark sectors searches, **complementary** to beam-dump experiments and high-energy colliders

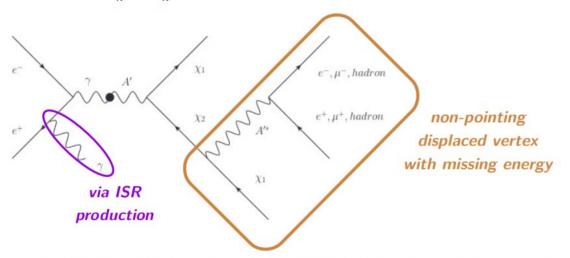

Excellent performance with displaced vertices and missing energy allows world's leading results on several models to probe DM puzzle

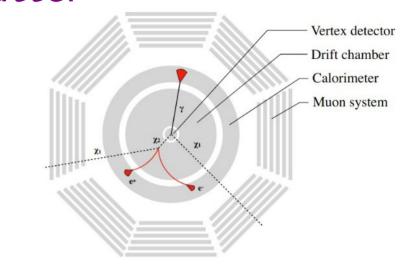
- \rightarrow Search for a long-lived (pseudo-)scalar in b \rightarrow s transitions, arXiv:2306.02830
- → Search for dark-Higgs particles Phys. Rev. Lett. 130, 071804 (2023)
- → Search for an invisible boson in LFV tau decays, Phys. Rev. Lett. 130, 181803 (2023)
- → Search for axion-like particles Phys. Rev. Lett. 125, 161806 (2020)
- → Sensitivity at Belle II for Inelastic DM searches, JHEP 04 (2021), arXiv:2012.08595


Thanks for your attention!

backup

Long-lived particle searches at Belle II


Transverse view of the Belle II detector



Inelastic dark matter

Dark photon A' and dark matter states $\chi 1$ and $\chi 2$ with a small mass splitting:

- χ1 is stable (relic)
- χ 2 is long-lived at small values of kinetic-mixing coupling (ε)
- unconstrained by direct detection experiments, both inelastic and elastic scattering suppressed
- focus on $m_{A'} > m_{\chi_1} + m_{\chi_2}$, such that $A' \to \chi 1 \chi 2$ is dominant decay

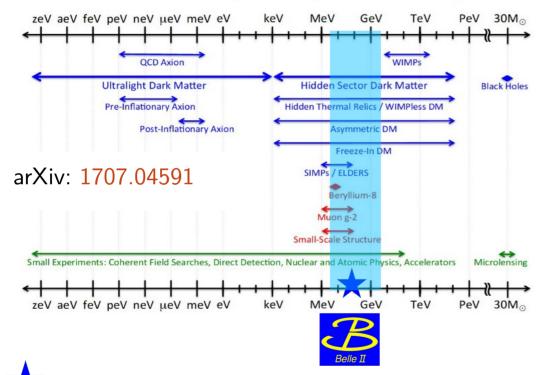
5 parameter model:

 $m_{A'}$ (fixed relative to $m_{\chi 1}$) $m_{\chi 1}$ (scan)

mass difference Δ=m_{χ2}-m_{χ1} (categorical)

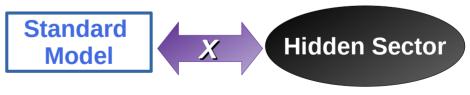
dark coupling a_D (fixed to benchmarks)

kinetic mixing parameter ε (limit)


- Mandatory to implement new trigger for displaced vertex detection
- Belle II could constrain the kinetic mixing $arepsilon < 10^{\text{-4}}$ with $\sim 100/ ext{fb}$

Journal of High Energy Physics volume 2020, Article number: 39 (2020)

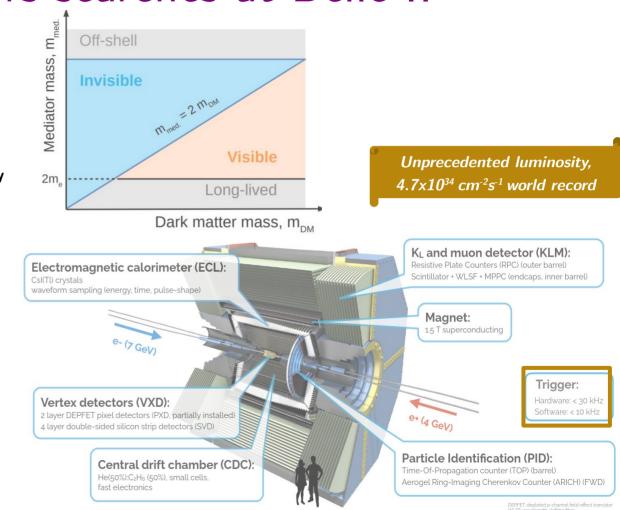
Dark matter and light dark sectors


• *Dark matter* is one of the most compelling reasons for new physics

Dark Sector Candidates, Anomalies, and Search Techniques

Possible sub-GeV scale scenario: *light dark sector* weakly coupled to SM through a light *mediator X*

- Vector portal → Dark Photons, Z' bosons
- Pseudo-scalar portal → Axion Like Particles (ALPs)
- Scalar portal \rightarrow **Dark higgs/Scalars**
- Neutrino portal o Sterile Neutrinos

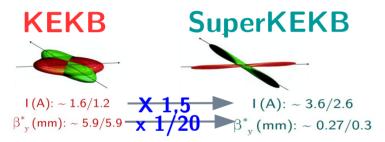

B-factories at e+**e**- **collider** can access the mass range favored by **light dark sectors**

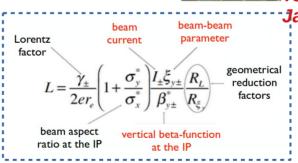
Dark sectors searches at Belle II

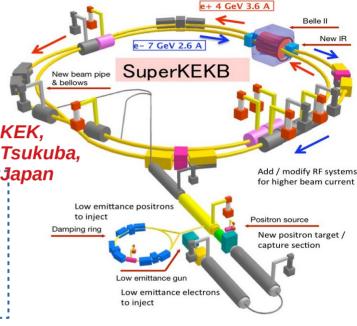
- Many models proposed, possibly very small couplings:
 - 1) Be signature-based
 - 2) Profit from clean environment at lepton colliders
 - + hermetic detector: Belle II at SuperKEKB asymmetric-energy e⁺e⁻ collider
 - \rightarrow running mainly at $\sqrt{s}=10.58$ GeV: B & **T** factory ($\sigma_{bb}\sim\sigma_{rr}\sim1$ nb), known initial state
 - \rightarrow efficient reconstruction of neutrals ($\pi^{\scriptscriptstyle 0},~\eta),$ recoiling system and missing energy
 - → specific **low-multiplicity triggers:** single track/muon/photon (previously not available at Belle)

GOAL: suppress high-cross section QED processes O(1-300 nb), without killing the signal < O(10 fb)

- Currently on first shutdown since July 2022
- Accumulated 424 fb⁻¹ (~ Babar, ~ half of Belle) and unique energy scan samples

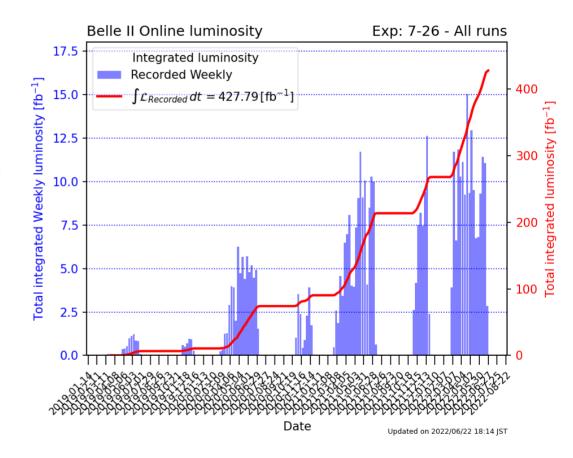



SuperKEKB accelerator


• Asymmetric-energy e^+e^- colliders + 4π detectors \rightarrow efficient reconstruction of neutrals (π^0, η) , recoiling system and missing energy

$$e^+e^- \rightarrow \Upsilon(4S) [10.58 \text{ GeV}] \rightarrow B\overline{B}$$

• B & τ factory $(\sigma_{bb} \sim \sigma_{\tau\tau} \sim 1 \text{ nb})$ + light dark sectors



- GOAL: $30 \times \text{KEKB}$ peak luminosity, $\mathcal{L} = 6 \cdot 10^{35} \text{cm}^{-2} \text{s}^{-1}$ (nano-beam scheme technique*)
- \rightarrow unprecedented luminosity, wolrd record **4.7x10**³⁴ cm⁻²s⁻¹

Belle II Luminosity

Total Integrated luminosity for good runs:

- Total integrated luminosity: 424 fb-1
- Total integrated luminosity at the Y(4S) resonance: 363 fb⁻¹
- Total integrated luminosity below Y(4S) resonance: 42 fb⁻¹
- Total integrated luminosity above Y(4S) resonance: 19 fb⁻¹

Long-shutdown activity and plans

Belle II stopped taking data in Summer 2022 for a long shutdown

- o replacement of beam-pipe
- replacement of photomultipliers of the central PID detector (TOP)
- o installation of 2-layered pixel vertex detector
- o improved data-quality monitoring and alarm system
- o complete transition to new DAQ boards (PCle40)
- replacement of aging components
- o additional shielding and increased resilience against beam backgrounds

Currently working on pixel detector installation:

- > shipping to KEK in mid March
- > final test at KEK scheduled in April

→ On track to resume data taking next winter with new pixel detector